
- •Лекция 2
- •Лекция 3
- •Лекция 4
- •Лекция 5
- •Лекция 13
- •Лекция 14
- •Лекция 16
- •Основные понятия
- •Понятие множества. Способы задания множеств.
- •Понятие множества. Способы задания множеств.
- •Отношения между множествами.
- •3, Операции над множествами.
- •Алгебра множеств.
- •Теорема о количестве подмножеств конечного множества.
- •Формула включений и исключений.
- •Лекция 2
- •1.Понятие вектора. Прямое произведение множеств.
- •2.Теорема о количестве элементов прямого произведения.
- •Понятие вектора. Прямое произведение множеств.
- •Теорема о количестве элементов прямого произведения.
- •Лекция 3
- •2. Понятие высказывания.
- •3. Логические операции над высказываниями
- •4.Формулы алгебры логики.
- •Лекция 4
- •2. Важнейшие равносильности алгебры логики.
- •3.Равносильные преобразования формул.
- •Задачи для самостоятельного решения
- •Лекция 5
- •Дизъюнктивная нормальная форма.
- •Конъюнктивная нормальная форма.
- •Проблема разрешимости.
- •Лекция 6
- •Функции алгебры логики.
- •3. Представление произвольной функции алгебры логики в виде формулы алгебры логики.
- •4.Приложения алгебры логики в технике (релейно-контактные схемы).
- •Контрольные вопросы
- •Лекция 7
- •Совершенная дизъюнктивная нормальная форма.
- •Совершенная конъюнктивная нормальная форма.
- •Совершенная дизъюнктивная нормальная форма.
- •2.Совершенная конъюнктивная нормальная форма.
- •Лекция 8
- •2.Понятие минимальной днф. Метод минимизирующих карт.
- •3.Метод Квайна.
- •4.Метод Карно.
- •5.Постановка задачи минимизации в геометрической форме.
- •6.Сокращенная днф.
- •7.Тупиковая днф. Днф Квайна.
- •Лекция 9
- •Некоторые логические операции. Двоичное сложение.
- •Полином Жегалкина.
- •Некоторые логические операции. Двоичное сложение.
- •Полином Жегалкина.
- •Лекция 10
- •Полная система . Достаточное условие полноты.
- •Критерий полноты системы булевых функций.
- •Независимые системы. Базис замкнутого класса.
- •Полная система. Достаточное условие полноты.
- •Критерий полноты системы булевых функций.
- •3. Независимые системы. Базис замкнутого класса.
- •Лекция 11
- •Понятие предиката.
- •Логические операции над предикатами.
- •1. Понятие предиката
- •2. Логические операции над предикатами
- •Лекция 12
- •2. Формулы логики предикатов.
- •Значение формулы логики предикатов.
- •4. Равносильные формулы логики предикатов.
- •Лекция 13
- •Построение противоположных утверждений.
- •3. Прямая, обратная и противоположная теоремы.
- •4. Необходимые и достаточные условия.
- •5. Доказательство методом от противного.
- •Задачи для самостоятельного решения
- •Лекция 14
- •2. Использование метода математической индукции для нахождения сумм конечного числа слагаемых
- •3. Использование метода математической индукции для доказательства неравенств и делимости выражений, зависящих от n на некоторое число
- •4. Обобщение метода математической индукции
- •Контрольные вопросы
- •Лекция 15
- •Операции над бинарными отношениями.
- •3. Свойства бинарных отношений.
- •4. Специальные бинарные отношения.
- •Контрольные вопросы
- •Лекция 16
- •Функция
- •1. 4. Отображение
- •Обратная функция
- •2. Свойства отображений и функций
- •3.Операции над функциями. Свойства операций
- •Контрольные вопросы
- •Лекция 17
- •Основные понятия .
- •2. Смежность, инцидентность, степени вершин.
- •3. Способы задания графов
- •Маршруты в неориентированном графе
- •Операции над графами.
- •Связность. Компоненты связности
- •Контрольные вопросы
- •Лекция 18
- •2. Метрические характеристики неориентированного графа
- •Минимальные маршруты в нагруженных графах
- •Задачи на деревьях
- •Цикловой ранг графа. Цикломатическое число
- •Контрольные вопросы
- •Лекция 19
- •Эйлеровы цепи и циклы
- •Гамильтоновы циклы и цепи
- •Эйлеровы цепи и циклы
- •Гамильтоновы циклы и цепи.
- •Контрольные вопросы
- •Лекция 20
- •Двудольный граф. Условие существования двудольного графа
- •Паросочетания . Реберные покрытия
- •Двудольный граф. Условие существования двудольного графа
- •Паросочетания. Реберные покрытия
- •Контрольные вопросы
- •Лекция 21
- •Основные определения
- •Алгоритм плоской укладки графа
- •Контрольные вопросы
- •Лекция 22
- •Способы задания ориентированного графа
- •Путь в ориентированном графе
- •4. Связность. Компоненты связности в орграфе
- •Контрольные вопросы
- •Лекция 23
- •2. Минимальные пути в нагруженных орграфах
- •3. Порядковая функция орграфа без контуров
- •Контрольные вопросы
5. Доказательство методом от противного.
Д
(1)
не верна, то есть существует такой объект х, что условие Р(х) истинно, а заключение Q(x) - ложно. Если из этих предположений путем логических рассуждений приходят к противоречивому утверждению, то делают вывод о том, что исходное предположение не верно, и верна теорема (1). Покажем, что такой подход дает доказательство истинности теоремы (1).
Действительно, предположение о том, что теорема (1) не справедлива, означает истинность формулы
Противоречивое утверждение, которое
получается из допущенного предположения,
есть конъюнкция С&
, где С — некоторое высказывание. Таким
образом, схема доказательства от
противного сводится к доказательству
истинности формулы
Легко видеть, что эта формула равносильна формуле (1).
Действительно,
Задачи для самостоятельного решения
1. Доказать несправедливость утверждений:
а) «Если дифференцируемая функция у= f(x) имеет в точке х0 вторую производную, равную нулю, то точка х0 – точка перегиба графика функции».
б) «Если числовая последовательность ограничена, то она имеет предел».
в) «Если функция непрерывна в точке х0, то она имеет производную в этой точке».
2. Для каждого из условий выясните, является ли оно необходимым и является ли оно достаточным, чтобы выполнялось неравенство х2 – 3х – 18 0: а) х=1, б) -2 х 5, в) х -3, г) х> -3, д) -1 х 10, е) –3 х 6.
3. Запишите на языке логики предикатов определение: «Функция f(x) называется ограниченной на множестве М, если существует такое неотрицательное число L, что для всех х М, справедливо неравенство |f(x)| M.»
4. В предложениях вместо многоточия поставьте слова «необходимо, но не достаточно», «достаточно, но не необходимо», «не необходимо и недостаточно», «необходимо и достаточно»:
а) Для того, чтобы четырехугольник был прямоугольным…, чтобы длины его диагоналей были равны;
б) Для того, чтобы х2 – 5х + 6 = 0…, чтобы х=3;
в) Для того, чтобы сумма четного числа натуральных чисел была четным числом…, чтобы каждое слагаемое было четным;
г) Для того, чтобы окружность можно было вписать в четырехугольник…, чтобы сумма длин суммы длин его противоположных сторон были равны;
д) Для того, чтобы множество было счетным…, чтобы его элементы можно было записать в виде занумерованной последовательности;
е) Для того, чтобы числовая последовательность имела предел…, чтобы она была ограниченной.
5.Сформулируйте:
а) Необходимый, но недостаточный признак параллелограмма;
б) Необходимый и достаточный признак параллелограмма;
в) Достаточное, но не необходимое условие, чтобы уравнение sinx = a имело решение.
г) Необходимое, но не достаточное условие, чтобы уравнение sinx = a имело решение.
Контрольные вопросы
Записать в виде формулы логики предикатов определение: а) непрерывности функции в точке; б) предела числовой последовательности; в) ограниченной функции.
Как выполняется построение противоположного утверждения к утверждению, заданному в виде формулы логики предикатов? Постройте противоположные утверждения для утверждений из первого пункта контрольных вопросов.
Приведите четыре вида теорем и объясните смысл каждой из них.
Какие из теорем являются равносильными?
Каким должно быть отношение между областями истинности предикатов Р(х) и Q(x), чтобы теорема
была истинной? Какой в этом случае из предикатов необходимое и какой достаточное условие?
Какое отношение должно быть между областями истинности предикатов Р(х) и Q(x), чтобы для теоремы была справедлива и обратная теорема? Какой теоремой можно заменить в этом случае прямую и обратную?
Докажите равносильность формул и
.