- •Задание № 1.
- •Задание № 2.
- •Задание № 3.
- •Задание № 4.
- •Задание № 5.
- •Задание № 6.
- •Задание № 7.
- •Задание № 8.
- •Задание № 9.
- •Задание № 10.
- •Задание № 11.
- •Задание № 12
- •Задание № 13.
- •Задание № 14.
- •Задание № 15.
- •Задание № 16.
- •Задание № 17.
- •Задание № 18.
- •Задание № 19.
- •Задание № 20.
- •Задание № 21.
- •Задание № 22.
- •Задание № 23.
- •Задание № 24.
- •Задание № 25.
- •Задание № 26.
- •Задание № 27.
- •Задание № 28.
- •Задание № 29.
- •Задание № 30.
- •Задание № 31.
- •Задание № 32.
- •Задание № 33.
- •Задание № 34.
- •Задание № 35.
- •Задание № 36.
Задание № 1.
Дайте определение силы инерции материальной точки. Запишите формулы касательной и нормальной сил инерции точки.
Тело А массой m1, кг подвешено на нити, переброшенной через неподвижный блок В, массой m2. Нить тянут с постоянной силой F. Используя принцип Даламбера, определить величину силы F, если тело А поднимается с постоянным ускорением а, мс-2.
Материальная точка закреплена в точке В невесомого стержня АВ, который движется в вертикальной плоскости. В точке А стержень закреплен с помощью неподвижного шарнира. Определите тип связи наложенной на материальную точку и запишите математическое выражение для этой связи.
Невесомый и нерастяжимый трос намотан на барабан радиуса R, м и массы m1, кг, которая равномерно распределена по его ободу. Барабан вращается относительно горизонтальной оси, проходящей через его центр О. К концу троса прикреплен груз массой m2, кг, который движется вертикально вниз. Выбирая в качестве обобщенной координаты линейное перемещение груза, вычислить обобщенную силу, если момент сил трения в цилиндрическом шарнире О равен Мс, н.м.
Ползун А массой m1, кг скользит в поле сил тяжести по вертикальной прямолинейной направляющей вниз, ползун В массой m2, кг скользит по горизонтальной направляющей и имеет в данный момент ускорение ав = 0,6 мс-2, направленное вправо. Ползуны А и В связаны посредством цилиндрических шарниров невесомым стержнем. Используя общее уравнение динамики определить ускорение ползуна А, если стержень образует угол = 600 с вертикальной прямой.
Дифференциальное уравнение собственных колебаний механической системы с одной степенью свободы имеет вид: . Определите частоту и период собственных колебаний системы. Вычислите амплитуду и начальную фазу колебаний, если . Нарисуйте график собственных колебаний системы.
Задание № 2.
Сформулируйте принцип Даламбера для материальной точки.
Материальная точка закреплена в точке В невесомой нити АВ. Точка движется в вертикальной плоскости. Точка А нити закреплена и остается неподвижной. Определите тип связи наложенной на материальную точку и запишите математическое выражение для этой связи.
Невесомый и нерастяжимый трос намотан на барабан радиуса R, м и массы m1, кг, которая равномерно распределена по его ободу. Барабан вращается относительно горизонтальной оси, проходящей через его центр О. К концу троса прикреплен груз массой m2, кг, который движется вертикально вниз. Выбирая в качестве обобщенной координаты угол поворота барабана, вычислить обобщенную силу, если момент сил трения в цилиндрическом шарнире О равен Мс, н.м.
Ползун А массой m1, кг скользит в поле сил тяжести по вертикальной прямолинейной направляющей и имеет в данный момент ускорение аа = 0,6 мс-2, направленное вниз, а ползун В массой m2, кг скользит по горизонтальной направляющей вправо. Ползуны А и В связаны посредством цилиндрических шарниров невесомым стержнем. Используя общее уравнение динамики определить ускорение ползуна В, если стержень образует угол = 600 с вертикальной прямой.
Механизм, изображенный на рисунке, находится в равновесии. Для заданного положения механизма, определить отношение возможных перемещений точек А и В.
Шар массой m, кг падает вертикально вниз на неподвижную горизонтальную плоскость. Скорость шара в момент удара о горизонтальную плоскость равна v мс-1. Полагая удар упругим определить коэффициент восстановления, если шар после удара поднялся на высоту h.