Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
22
Добавлен:
02.05.2014
Размер:
368.64 Кб
Скачать
  1. Виды и характеристики носителей

Если обозначить параметры носителя через a1 , a2 , …, an ,то носитель как функция времени может быть представлен в виде:

UН =g(a1 , …, an ,t).

Модулированный импульс (сигнал) можно описать в виде:

Ux =g[a1 , …, ai +ai (t), …,an ,t],

где ai (t)- переменная составляющая параметра носителя, несущая информацию, или модулирующая функция. Последняя обычно связана с информационной (управляющей) функцией x линейной зависимостью:

ai =K·x,

где K – коэффициент пропорциональности.

Первый тип носителя UН (t) – постоянное состояние, например, постоянное напряжение имеет только один информационный параметр; это в данном случае – значение напряжения, причем модуляция сводится к такому изменению напряжения, чтобы оно в определенном масштабе представило передаваемые данные. При этом может изменяться и полярность напряжения.

Второй тип носителя – колебания, например переменное напряжение содержит три таких параметра: амплитуду U, фазу φ, частоту ω (или период T=2π/ω).

Третий тип носителя – последовательность импульсов – предоставляет собой еще большие возможности. Здесь параметрами модуляции могут быть: амплитуда импульсов U, фаза импульсов φ, частота импульсов f, длительность импульсов или пауз τ, число импульсов n и комбинация импульсов и пауз, определяющая код k. В последнем случае имеет место так называемая кодово-импульсная модуляция.

  1. Спектры сигналов

Сигнал – изменяющаяся физическая величина, обеспечивающая передачу информации по линии связи. Всё многообразие сигналов, используемых в информационных системах, можно разделить на 2 основные группы: детерминированные и случайные. Детерминированный сигнал характеризуется тем, что в любые моменты времени их значения являются известными величинами. Сигнал, значения которого в любые моменты времени будут случайными величинами, называется случайным

Это разделение является условным, так как детерминированных сигналов в точном их понимании в природе нет. На практике не может быть заранее точно предсказано значение сигнала в любые моменты времени, иначе сигнал не нес бы полезной информации. Кроме того, любой реальный сигнал случаен в силу воздействия на него многочисленных случайных факторов. Несмотря на это, исследование детерминированных сигналов важно по двум причинам:

  • математический аппарат, используемый для анализа детерминированных сигналов, гораздо проще аппарата анализа случайных сигналов;

  • выводы, полученные в результате исследований детерминированных сигналов, могут быть во многих случаях использованы для анализа случайных сигналов.

В зависимости от методов анализа информационных систем применяются те или иные способы представления сигналов. К основным относятся:

1) представление сигнала в виде некоторой функции времени x(t);

2) представление сигнала в операторной форме x(p);

3) представление сигнала в виде некоторой функции частоты.

В частотном виде могут представляться как периодические, так и непериодические детерминированные сигналы.

Необходимо заметить, что в реальных условиях периодические сигналы не существуют, т.к. идеальный периодический сигнал бесконечен во времени, в то время как всякий реальный сигнал имеет начало и конец. Однако во многих случаях конечностью времени действия сигнала можно пренебречь и для его анализа допустимо использовать аппарат, пригодный для идеальных периодических сигналов.

А). Периодические сигналы

Функция x(t) называется периодической, если при некотором постоянном Т выполняется равенство:

x(t)=x(t+nT),

где Т – период функции, n – любое целое (положительное или отрицательное) число, а аргумент t принимает значение из области определения этой функции.

x(t)

0 t

Периодическая функция x(t) с периодом Т обладает следующим свойством: интеграл от этой функции, взятый на интервале длиной Т, не изменяется при изменении пределов интегрирования при условии, что длина интервала интегрирования остается равной Т.

В общем случае сигнал представляет собой сложное колебание, поэтому возникает необходимость представить сложную функцию x(t), определяющую сигнал через простые функции.

Для представления сигналов в частотной области широко используют два частных случая разложения функции в ортогональные ряды: тригонометрическая форма разложения и комплексная.

Рассмотрим их.

Соседние файлы в папке Лекция 6(Сигналы)