
- •Лекция 1. Базовые понятия информации Введение
- •Информация, энтропия и избыточность при передаче данных
- •Информационные процессы
- •Основные структуры данных
- •Обработка данных
- •Способы представления информации и два класса эвм
- •Представление данных в эвм.
- •Вопросы и задания
- •Лекция 2. Компьютер – общие сведения
- •Центральное процессорное устройство
- •Устройства ввода/вывода
- •Классификация запоминающих устройств
- •Оперативная память
- •Основные внешние устройства компьютера
- •Основные характеристики персональных компьютеров
- •Вопросы и задания
- •Лекция 3. Многоуровневая компьютерная организация
- •Архитектура компьютера
- •Классическая структура эвм - модель фон Неймана
- •Особенности современных эвм
- •Специальное
- •Библиотеки стандартных программ и ассемблеры
- •Высокоуровневые языки и системы автоматизированного программирования
- •Диалоговые ос и субд
- •Прикладные программы и case – технологии
- •Компьютерные сети и мультимедиа
- •Операционные системы
- •Лекция 5.Вычислительные системы - общие сведения Введение
- •Общие требования
- •Классификация компьютеров по областям применения
- •Персональные компьютеры и рабочие станции
- •Суперкомпьютеры
- •Увеличение производительности эвм, за счет чего?
- •Параллельные системы
- •Использование параллельных вычислительных систем
- •Закон Амдала и его следствия
- •Назначение процессора и его устройство
- •Устройство управления
- •Микропроцессорная память
- •Основная (оперативная) память - структура адресной памяти
- •Интерфейсная часть мп
- •Тракт данных типичного процессора
- •Команды уу
- •Базовые команды
- •Трансляторы
- •Архитектура системы команд и классификация процессоров
- •Микроархитектура процессора Pentium II
- •512 Кбайт
- •Вопросы и задания
- •Лекция 6 Структурная организация эвм - память Общие сведения
- •Верхняя
- •Верхняя память (Upper Memory Area) – это 384 Кбайт, зарезервированных у верхней границы системной памяти. Верхняя память разделена на несколько частей:
- •Первые 128 Кбайт являются областью видеопамяти и предназначены для использовании видеоадаптерами, когда на экран выводится текст или графика, в этой области хранятся образы изображений.
- •Видеопамять
- •Иерархия памяти компьютера
- •Оперативная память, типы оп
- •Логическая организация памяти
- •Связывание адресов
- •Функции системы управления памятью
- •Тэг Строка Слово (байт)
- •Способы организации кэш-памяти
- •1. Где может размещаться блок в кэш-памяти?
- •2. Как найти блок, находящийся в кэш-памяти?
- •3. Какой блок кэш-памяти должен быть замещен при промахе?
- •4. Что происходит во время записи?
- •Разновидности строения кэш-памяти
- •Вопросы и задания
- •Лекция 7 Логическая организация памяти Введение
- •Адресная, ассоциативная и стековая организация памяти
- •Стековая память
- •Сегментная организация памяти.
- •Косвенная адресация
- •Операнд 407 суммируется с
- •Типы адресов
- •Понятие виртуальной памяти
- •Страничное распределение
- •Свопинг
- •Вопросы и задания
- •Лекция 8 Внешняя память компьютера Введение
- •Жесткий диск (Hard Disk Drive)
- •Конструкция жесткого диска
- •Основные характеристики нмд:
- •Способы кодирования данных
- •Интерфейсы нмд
- •Структура хранения информации на жестком диске
- •Кластер
- •Методы борьбы с кластеризацией
- •Магнито-оптические диски
- •Дисковые массивы и уровни raid
- •Лазерные компакт-диски cd - rom
- •Вопросы и задания
- •Лекция 9 Основные принципы построения систем ввода/вывода
- •Физические принципы организации ввода-вывода
- •Интерфейс
- •Магистрально-модульный способ построения эвм
- •Структура контроллера устройства
- •Опрос устройств и прерывания. Исключительные ситуации и системные вызовы
- •Организация передачи данных
- •Прямой доступ к памяти (Direct Memory Access – dma)
- •Логические принципы организации ввода-вывода
- •Структура системы ввода-вывода
- •Буферизация и кэширование
- •Заключение
- •Структура шин современного пк
- •Мост pci
- •Вопросы и задания
- •Лекция 10. Bios и его настройки Введение
- •Начальная загрузка компьютера
- •Вход в bios и основные параметры системы
- •Общие свойства – стандартная настройка параметров
- •Свойства bios
- •Свойства других чипсетов
- •Свойства интегрированных устройств
- •Свойства слотов pci
- •Управление питанием
- •Лекция 11 Особенности архитектуры современных вс
- •Область применения и способы оценки производительности мвс
- •Классификация архитектур по параллельной обработке данных
- •Вычислительные Системы
- •Параллелизм вычислительных процессов
- •Параллелизм на уровне команд – однопроцессорные архитектуры
- •Конвейерная обработка
- •Суперскалярные архитектуры
- •Мультипроцессорные системы на кристалле Технология Hyper-Threading
- •Многоядерность — следующий этап развития
- •Многопроцессорные архитектуры – параллелизм на уровне процессоров
- •Векторные компьютеры
- •Использование параллельных вычислительных систем
- •Закон Амдала и его следствия
- •Вопросы и задания
- •Лекция 12 Архитектура многопроцессорных вс Введение
- •Smp архитектура
- •Mpp архитектура
- •Гибридная архитектура (numa)
- •Организация когерентности многоуровневой иерархической памяти.
- •Pvp архитектура
- •Кластерная архитектура
- •Проблемы выполнения сети связи процессоров в кластерной системе.
- •Лекция 13 Кластерные системы
- •Концепция кластерных систем
- •Разделение на High Avalibility и High Performance системы
- •Проблематика High Performance кластеров
- •Проблематика High Availability кластерных систем
- •Смешанные архитектуры
- •Лекция 14 Высокопроизводительные процессоры
- •Ассоциативные процессоры
- •Конвейерные процессоры
- •Матричные процессоры
- •Клеточные и днк процессоры
- •Клеточные компьютеры
- •Трансгенные технологии
- •Коммуникационные процессоры
- •Процессоры баз данных
- •Потоковые процессоры
- •Нейронные процессоры
- •Искусственные нейронные сети
- •Нейрокомпьютеры
- •Процессоры с многозначной (нечеткой) логикой
- •Лекция 15 Многомашинные системы – вычислительные сети Введение
- •Простейшие виды связи сети передачи данных
- •Связь компьютера с периферийным устройством
- •Связь двух компьютеров
- •Многослойная модель сети
- •Функциональные роли компьютеров в сети
- •Одноранговые сети
- •Сети с выделенным сервером
- •Гибридная сеть
- •Сетевые службы и операционная система
- •Лекция 16. Файловая система компьютера Введение
- •Общие сведения о файлах
- •Типы файлов
- •Атрибуты файлов
- •Организация файлов и доступ к ним
- •Последовательный файл
- •Файл прямого доступа
- •Другие формы организации файлов
- •Операции над файлами
- •Директории. Логическая структура файлового архива
- •Разделы диска. Организация доступа к архиву файлов.
- •Операции над директориями
- •Защита файлов
- •Контроль доступа к файлам
- •Списки прав доступа
- •Заключение
- •Лекция 17. Сети и сетевые операционные системы Введение
- •Для чего компьютеры объединяют в сети
- •Сетевые и распределенные операционные системы
- •Взаимодействие удаленных процессов как основа работы вычислительных сетей
- •Основные вопросы логической организации передачи информации между удаленными процессами
- •Понятие протокола
- •Многоуровневая модель построения сетевых вычислительных систем
- •Проблемы адресации в сети
- •Одноуровневые адреса
- •Двухуровневые адреса
- •Удаленная адресация и разрешение адресов
- •Локальная адресация. Понятие порта
- •Полные адреса. Понятие сокета (socket)
- •Проблемы маршрутизации в сетях
- •Связь с установлением логического соединения и передача данных с помощью сообщений
- •Синхронизация удаленных процессов
- •Заключение
- •Лекция 18. Система счисления и архитектура эвм Введение
- •Системы счисления и их роль в истории компьютеров
- •«Золотое сечение» и компьютер Фибоначчи
- •Геометрическое определение "золотого сечения"
- •Алгебраические свойства золотой пропорции
- •Рассмотрим теперь "золотую пропорцию"
- •Фибонччи и компьютеры
- •"Троичный принцип" Николая Брусенцова.
- •Список литературы:
Оперативная память, типы оп
Главная задача компьютерной системы – выполнять программы. Программы вместе с данными, к которым они имеют доступ, в процессе выполнения должны (по крайней мере частично) находиться в оперативной памяти. Операционной системе приходится решать задачу распределения памяти между пользовательскими процессами и компонентами ОС. Эта деятельность называется управлением памятью. Таким образом, память (storage, memory) является важнейшим ресурсом, требующим тщательного управления.
Тип оперативной памяти важен постольку, поскольку технология изготовления и физические принципы ее функционирования определяют самый важный параметр – быстродействие. Чем выше быстродействие ОП, тем меньше время доступа к ней. В настоящее время наиболее распространены микросхемы памяти двух типов: статические ОЗУ – SRAM и динамические – DRAM. Микросхемы DRAM (МОП – конденсаторы, на одну ячейку памяти – один активный элемент) обеспечивают время доступа ~ 60 нс, а SRAM (триггерные элементы памяти, на одну ячейку – 6 активных элементов) время доступа ~ 1-12 нс (зависит от технологии изготовления элементной базы логики, так , например, ТТЛ – 10 нс, ТТЛ-Шотки ~ 3 нс, ЭСЛ – 0,5 – 2 нс, КМОП ~ 20-30 нс, и т.д.). Столь существенное различие объясняется необходимостью периодической регенерации заряда МОП - конденсаторов (токи утечки).
Разумеется, более быстрая память дороже стоит, поэтому SRAM используется, как правило, для кэш памяти, в регистрах микропроцессора и системах управления RDRAM.
Конструктивное исполнение
Динамическое ОЗУ со времени своего появления прошло несколько стадий роста и продолжает совершенствоваться. Вначале микросхемы динамического ОЗУ производились в DIP-корпусах. Затем их сменили модули SIPP, DIMM, SIMM и RIMM.
SIMM - модуль (Single In-Line Memory Module), модуль с однорядным расположением выводов, могут иметь объем 256 Кбайт, 1,2,4, 8, 16 и 32 Мбайт. Модули SIMM для соединения с системной платой имеют не штырьки, а позолоченные полоски (так называемые pin, пины). Первыми SIMM-модулями были 30-пиновые SIMM FPM DRAM, с частотой работы 29 МГц, затем 72-пиновые EDO RAM с частотой 50 МГц. Существенной особенностью ПК, собранных на Pentium является то, что они имеют 64-разрядную шину данных, а это означает, что 32-разрядные SIMM можно устанавливать только парами. В настоящее время SIMM-модули, как 30-пиновые, так и 72-пиновые заменяются модулями DIMM. DIMM (Dual Inline Memory Module) – модуль памяти с двойным расположением 168 выводов. Следует отметить, что разъем DIMM имеют много разновидностей DRAM.
SDRAM (Synchronic DRAM) – динамическое ОЗУ с синхронным интерфейсом, работающие на частотах 143 МГц и выше. ESDRAM – динамические ОЗУ с синхронным интерфейсом, с кэшом на самом модуле, работающие на частотах 200 МГц и выше. SLDRAM – имеет в своем составе SRAM, работает на частоте до 400 МГц. RDRAM, RIMM – работает на частоте до 800 МГц.
Мы уже видели, что стоимость хранения данных в расчете на один бит увеличивается с ростом быстродействия. Однако пользователю хотелось бы иметь и недорогую, и быструю память. Кэш-память представляет некоторое компромиссное решение этой проблемы. Однако известно, рост производительности процессора составляет 60% в год, а уменьшение задержки памяти всего на 7%. Разрыв между быстродействием CPU и быстродействием памяти приводит к появлению «узкого горла». Кэш-память только частично решает эту проблему, создавая новую – почти 50% площади кристалла отдается кэшу (например, Alpha 21164 компании Digital).