- •1. Введение
- •2. Физические средства зи
- •3. Классификация основных физических средств зи и выполняемых ими функций
- •4. Акустика. Определения
- •5. Линейные хар-ки звукового поля
- •6. Энергетические хар-ки звукового поля.
- •7. Уровни
- •8. Акустические уровни
- •9. Плоская волна
- •10. Мат. Описание бегущих волн.
- •11. Сферическая волна
- •12. Цилиндрическая волна
- •13. Интерференция звуковых волн
- •14. Отражение звука
- •15. Преломление звука
- •16. Дифракция волн
- •17. Затухание волн
- •18. Основные свойства слуха
- •19. Восприятие по частоте
- •20. Вокодерная связь. Использование вокодеров
- •21. Нелинейные свойства слуха
- •22. Восприятие по амплитуде. Порог слышимости
- •23. Уровень ощущений
- •24. Уровень громкости
- •25. Эффект маскировки
- •26. Громкость сложных звуков
- •27. Первичные акустические сигналы и их источники
- •28. Динамический диапазон и уровни
- •29. Частотный диапазон и спектры
- •30. Первичный речевой сигнал
- •31. Акустика в помещениях
- •32. Средний коэффициент поглощения
- •33. Звукопоглощающие материалы и конструкции
- •34. Перфорированные резонаторные поглотители
- •35. Электромагнитные волны
- •36. Распространение э/м волн
- •37. Излучение и прием э/м волн
- •38. Распространение э/м волн в пространстве
- •39. Основные сведения о линиях передачи и объемных резонаторах
- •40. Объемные резонаторы
- •41. Антенны. Основные физические параметры антенн
- •42. Кпд. Диаграмма направленности
- •43. Коэффициент направленного действия
- •44. Коэффициент усиления. Действ. Длина антены.
- •45. Основные типы антенн. Проволочные антенны
- •46. Рупорные антенны
- •47. Зеркальные антенны
- •48. Рамочные антенны
- •49. Основы радиолокации
- •50. Общая характеристика радиолокационного канала
- •51. Диапазон длин волн в рл
- •52. Радиолокационные цели, эффективная отражающая площадь (эоп) цели
- •53. Эоп для тел простой формы. Линейный вибратор
- •54. Эоп идеального проводящего тела, размеры которого значительно больше λ
- •55. Коэффициенты отражения Френеля
- •56. Противорадиолокационные покрытия
- •57. Информация о скорости движения цели, извлекаемой при обработке радиолокационного сигнала
- •58. Основные свойства радиоволн, используемых в радиолокации
- •59. Оптические квантовые генераторы
- •60. Излучение э/м волн совокупностью когерентных источников
- •61. Поглощение и усиление излучения, распространяющегося в среде.
- •62. Принцип работы лазера
- •63. Основные типы лазеров
- •64. Твердотельные лазеры
- •65. Жидкостные лазеры
- •66. Газовые лазеры
- •67. Полупроводниковые лазеры
- •68. Использование лазерного излучения для съема информации
- •69. Фоторефрактивный эффект
61. Поглощение и усиление излучения, распространяющегося в среде.
Пусть плоская волна частоты ω соответствует разности энергий Еm-Eк каких-либо двух состояний атомов или молекул среды, распространяется сквозь среду. Поток излучения изменяется в соответствии с законом Бугера, причем коэф‑т поглощения определяется соотношением α0(ω)=¼λ²amn(ω)gm[Nn/gn‑Nm/gm] (*), где amn – спектральная плотность коэф‑та Эйнштейна; m и n – энергетические состояния; gm и gn – статистические веса состояний m и n; Nm и Nn – заселенности состояний. В результате переходов n в m, сопровождающихся поглощением света, поток уменьшается, в результате перехода m в n вынужденное испускание увеличивает поток. Выражение (*) устанавливает связь между непосредственно измеряемым коэф‑том поглощения и коэф‑тами Эйнштейна. Слагаемые Nn/gn и Nm/gm описывают вклады соответственно n→m и m→n, которые выражаются соответственно поглощением и испусканием фотонов. Мощность энергии, выделяемой или поглощаемой единицей среды, выражается следующим образом: q0(ω)dω=α0(ω)I(ω)dω=α0(ω)CU(ω)dω, I(ω)=CU(ω), где U(ω) – спектральная плотность потока; I(ω) – спектральная плотность энергии. Волны, испущенные в результате вынужденных переходов, обладают, как показал Эйнштейн, следующими свойствами: их частота, фаза, характер поляризации, направление такие же, как у излучения, вызвавшего переход. Т.о. индуцируемые фотоны неотличимы от фотонов, падающих на атомы. В условиях термодинамического равновесия среды, сквозь которую распространяется излучение Nm/gm<Nn/gn (что вытекает из принципа Больцмана) и, следовательно, α0(ω)>0. Это соответствует поглощению излучения. Если тем или иным образом выполняется условие Nm/gm>Nn/gn, то коэф‑т α0(ω) изменит знак и станет отрицательным. В этом случае плотность энергии, распространяемой в среде, будет возрастать, а не убывать как при термодинамическом равновесии. Т.е. за счет индуцированного изучения в световой поток будет добавляться больше фотонов, чем он теряет на возбуждение атомов при обратном переходе n→m. Соотношение между концентрациями атомов, соответствующих Nm/gm>Nn/gn, называется инверсной заселенностью. Вместо поглощаемой мощности q0(ω) и коэф‑та поглощения α0(ω) целесообразно ввести новое обозначение q(ω)=α(ω)U(ω)c, α(ω)=¼λ²gmamn(ω)∙[Nm/gm‑Nn/gn] – коэф‑т испускания. Среду с инверсной заселенностью энергетических уровней, обеспечивающую усиление распространяющегося в ней излучения, принято называть активной средой. Инверсную заселенность уровней можно образовать в газовом разряде с помощью специальных химических реакций или с помощью оптического возбуждения. Э/м волны, возникающие в результате вынужденных переходов, когерентны с волной, вызывающей эти переходы. Если поле, взаимодействующее с атомами представляет собой плоскую монохроматическую волну, то и вынужденно испущенные фотоны также образуют плоскую монохроматическую волну с той же частотой поляризации и с тем же направлением распространения. В результате вынужденного испускания изменяется амплитуда подающей волны. Можно утверждать, что вынужденное испускание усиливает, а поглощение ослабляет излучение без изменения основных его характеристик. Для понимания свойств излучения ОКГ полезным оказалось микроскопическое описание, основанное на представлении о когерентности падающей волны и вторичных волн, испускаемых в результате вынужденных переходов.
Условие пространственной синфазности, необходимое для получения мощного направленного излучения от макроскопического источника может осуществляться благодаря процессу вынужденного испускания. Волны, испускаемые атомами, находящимися в различных точках пространства будут синфазно складываться в точке наблюдения, если разность начальных фаз этих волн компенсирует разность хода. Но именно таким и будет положение, если вторичные волны возникают в результате вынужденного испускания под влиянием внешней световой волны: значения фазы этой волны в точках расположения различных атомов z1 и z2 различаются на величину k(z2-z1), где k – волновое число, и вторичные волны окажутся сдвинутыми по начальной фазе относительно друг друга на ту же величину, взятую с обратным знаком, что и необходимо для их синфазного сложения в точке наблюдения. Помимо когерентного испускания, связанного с вынужденными переходами, атомы среды совершают и самопроизвольные переходы, в результате которых испускаются волны, некогерентные между собой и с внешним полем. Излучение активной среды всегда представляет смесь когерентной и некогерентной частей. Соотношение между этими частями зависит от интенсивности внешнего поля.