
- •1. Введение
- •2. Физические средства зи
- •3. Классификация основных физических средств зи и выполняемых ими функций
- •4. Акустика. Определения
- •5. Линейные хар-ки звукового поля
- •6. Энергетические хар-ки звукового поля.
- •7. Уровни
- •8. Акустические уровни
- •9. Плоская волна
- •10. Мат. Описание бегущих волн.
- •11. Сферическая волна
- •12. Цилиндрическая волна
- •13. Интерференция звуковых волн
- •14. Отражение звука
- •15. Преломление звука
- •16. Дифракция волн
- •17. Затухание волн
- •18. Основные свойства слуха
- •19. Восприятие по частоте
- •20. Вокодерная связь. Использование вокодеров
- •21. Нелинейные свойства слуха
- •22. Восприятие по амплитуде. Порог слышимости
- •23. Уровень ощущений
- •24. Уровень громкости
- •25. Эффект маскировки
- •26. Громкость сложных звуков
- •27. Первичные акустические сигналы и их источники
- •28. Динамический диапазон и уровни
- •29. Частотный диапазон и спектры
- •30. Первичный речевой сигнал
- •31. Акустика в помещениях
- •32. Средний коэффициент поглощения
- •33. Звукопоглощающие материалы и конструкции
- •34. Перфорированные резонаторные поглотители
- •35. Электромагнитные волны
- •36. Распространение э/м волн
- •37. Излучение и прием э/м волн
- •38. Распространение э/м волн в пространстве
- •39. Основные сведения о линиях передачи и объемных резонаторах
- •40. Объемные резонаторы
- •41. Антенны. Основные физические параметры антенн
- •42. Кпд. Диаграмма направленности
- •43. Коэффициент направленного действия
- •44. Коэффициент усиления. Действ. Длина антены.
- •45. Основные типы антенн. Проволочные антенны
- •46. Рупорные антенны
- •47. Зеркальные антенны
- •48. Рамочные антенны
- •49. Основы радиолокации
- •50. Общая характеристика радиолокационного канала
- •51. Диапазон длин волн в рл
- •52. Радиолокационные цели, эффективная отражающая площадь (эоп) цели
- •53. Эоп для тел простой формы. Линейный вибратор
- •54. Эоп идеального проводящего тела, размеры которого значительно больше λ
- •55. Коэффициенты отражения Френеля
- •56. Противорадиолокационные покрытия
- •57. Информация о скорости движения цели, извлекаемой при обработке радиолокационного сигнала
- •58. Основные свойства радиоволн, используемых в радиолокации
- •59. Оптические квантовые генераторы
- •60. Излучение э/м волн совокупностью когерентных источников
- •61. Поглощение и усиление излучения, распространяющегося в среде.
- •62. Принцип работы лазера
- •63. Основные типы лазеров
- •64. Твердотельные лазеры
- •65. Жидкостные лазеры
- •66. Газовые лазеры
- •67. Полупроводниковые лазеры
- •68. Использование лазерного излучения для съема информации
- •69. Фоторефрактивный эффект
55. Коэффициенты отражения Френеля
Отражение и преломление плоской э/м волны при ее падении на плоскую границу двух сред определяется коэффициентами Френеля. Коэф-т отражения для горизонтальной поляризованной волны (называют также волной с перпендикулярной поляризацией) равен (для немагнитной среды): RГ(∙)=E1/E0=(cosθ1-√(ε2/ε1-sin2θ1))/(cosθ1+√(ε2/ε1-sin2θ1))=(cosθ1-√(ε-sin2θ1))/(cosθ1+√(ε-sin2θ1)), где ε1 – относительная диэлектрическая проницаемость первой среды (1 для воздуха); ε2 – то же для второй среды, ε2=ε=ε`(1-j∙tgδ), tgδ=σ/(ωε0ε`), ε0=1/(36π)∙10-9Ф/м Ф/м. Таким образом выражение для относительной диэлектрической комплексной проницаемости среды ε=ε`-j∙60λσ (*). Для вертикально поляризованной волны, волны с параллельной поляризацией (вектор Е лежит в плоскости падения) RВ= E1x(∙)/E0x(∙)= -((ε2(∙)cosθ1 –√ε2(∙)∙√(ε2(∙)- ε1(∙)sin2θ1))/((ε2(∙)cosθ1+√ε2(∙)∙√(ε2(∙)-ε1(∙)sin2θ1))=-((ε(∙)cosθ1–√(ε2(∙)-ε1(∙)sin2θ1))/((ε(∙)cosθ1 –√(ε(∙)- ε1(∙)sin2θ1)). (РИСУНОК).
При нормальном падении коэф-ты RB(∙)и RГ(∙) совпадают: R=RГ=RB=(1-√ε)/(1+√ε) (наверху везде точки). Иногда коэф-т отражения RB(∙) определяют как отношение напряженностей магнитного поля Н1/Н0. Для грунтов ε’=2÷24. Для средних грунтов ε’=10. Для морской воды ε’=80. В радиолокации, когда λ<1 м, мнимой частью выражения (*) можно пренебречь (для грунта), а для морской воды, если λ в см и мм диапазонах. Изменение коэф-тов Френеля: RВ,Г(∙)= RВ,Г ∙exp(-jφВ,Г). (РИСУНОК). Из рисунка видно, что для горизонтальной поляризации φг=180˚. Для вертикальной поляризации для чистого диэлектрика Rв=0 при cosθ1= √(ε’-1/ε’)≈ 1/√ε’ – угол Брюстера. Для реальных сред с потерями Rв достигает минимума вблизи угла, равного ≈73˚. В наземных РЛС обычно используется вертикальная поляризация, преимуществом которой является меньшее значение модуля коэф-та отражения при углах скольжения близких к углу Брюстера. Это заметно снижает зеркальное отражение при θ<89˚ над водой и θ<88˚ над сушей, что уменьшает интерференционные провалы ДН. Имеется возможность ослабить отражение с помощью круговой поляризации.
56. Противорадиолокационные покрытия
(РИСУНОК). Коэф-т отражения, коэф-т Френеля при нормальном падении плоской волны на границе воздух-покрытие равен (см. раньше). Обычно для этих целей применяется пенопластовый каркас с наполнителем, хорошо поглощающий радиоволны, причем плотность материала и концентрация поглотителя должны возрастать с глубиной. Радиопоглощающий материал наиболее удобен в виде пирамид с углом при вершине от 30 до 60 градусов, что обеспечивает многократное переотражение, увеличивающее поглощение. Для снижения коэф-та отражения на 20дБ высота пирамид должна быть от 0,5 до 0,6 длины волны. Для снижения на 50 дБ – от 7 до 10 длины волны. Меньшую толщину, но в гораздо более узком диапазоне имеют интерференционные покрытия. При выборе их толщины используется формула: d= λ/(4∙Re√ε(∙)μ(∙)). Имеет место противофазность колебаний, отражающихся от покрытия объекта, а в случае равенства амплитуд имеет место полное уничтожение отражения. Покрытие может быть изготовлено из различных пластмасс или каучука, наполненного порошком графита или карбольного железа.