
- •Оглавление
- •Предисловие
- •Предисловие автора к первому изданию
- •Предисловие редактора английского издания
- •Часть первая. Введение Глава 1 Введение
- •Глава 2 Распространение нефти, газа и других нафтидов
- •Условия залегания
- •Поверхностные нафтидопроявления
- •Геологический возраст пород-коллекторов
- •Заключение
- •Цитированная литература
- •Часть вторая. Природный резервуар
- •Глава 3 Порода-коллектор
- •Классификация
- •Номенклатура пород-коллекторов
- •Обломочные породы-коллекторы
- •Цементация обломочных пород-коллекторов
- •Хемогенные породы-коллекторы
- •Химически осажденные карбонатные породы
- •Кремнистые породы-коллекторы
- •Породы-коллекторы смешанного происхождения
- •Разрезы буровых скважин
- •Породы-коллекторы морского и неморского происхождения
- •Заключение
- •Цитированная литература
- •Глава 4 Поровое пространство породы-коллектора
- •Пористость
- •Измерения пористости
- •Проницаемость
- •Измерения проницаемости
- •Эффективная и относительная проницаемость
- •Классификация и происхождение порового пространства
- •Первичная, или межзерновая, пористость
- •Вторичная, или промежуточная, пористость
- •Связь между пористостью и проницаемостью
- •Заключение
- •Цитированная литература
- •Глава 5 Пластовые флюиды-вода, нефть, газ
- •Флюиды, содержащиеся в природных резервуарах
- •Источники информации о пластовых флюидов
- •Распределение газа, нефти и воды в резервуаре
- •Классификация вод нефтяных месторождений
- •Характеристика вод нефтяных месторождений
- •Происхождение соленых вод нефтяных месторождений
- •Измерение количества нефти
- •Химические свойства нефти
- •Ряды углеводородов
- •Другие компоненты нефтей
- •Физические свойства нефтей
- •Природный газ
- •Измерение объема природного газа
- •Состав природного газа
- •Примеси в природном газе
- •Заключение
- •Цитированная литература
- •Глава 6 Пластовые ловушки: общие сведения и структурные ловушки
- •Антиклинальная теория
- •Классификация ловушек
- •Структурные ловушки
- •Ловушки, связанные с разрывными нарушениями
- •Ловушки, связанные с трещиноватостью
- •Заключение
- •Цитированная литература
- •Глава 7 Пластовые ловушки (продолжение): стратиграфические и гидродинамические
- •Первичные стратиграфические ловушки
- •Линзы и фациальные замещения обломочных пород
- •Линзы и фации хемогенных пород
- •Вторичные стратиграфические ловушки
- •Гидродинамические ловушки
- •Заключение
- •Цитированная литература
- •Глава 8 Пластовые ловушки (продолжение): комбинированные ловушки и соляные купола
- •Комбинированные ловушки
- •Соляные купола
- •Заключение
- •Цитированная литература
- •Часть третья. Термодинамические условия в природном резервуарах
- •Глава 9 Пластовые условия ‑ давление и температура
- •Пластовое давление
- •Измерение давления
- •Градиенты давления
- •Источники пластового давления
- •Аномальные пластового давления
- •Температура
- •Измерение температуры
- •Геотермическии градиент
- •Использование результатов температурных замеров
- •Источники тепловой энергии
- •Результаты воздействия тепла
- •Заключение
- •Цитированная литература
- •Глава 10 Механика природного резервуара
- •Фазовые состояния
- •Поверхностные явления
- •Поверхностная энергия; поверхностное натяжение; межфазное натяжение
- •Капиллярное давление
- •Пластовая энергия
- •Газ, растворенный в нефти
- •Режим газовой шапки (газонапорный режим)
- •Водонапорный режим
- •Гравитационные силы
- •Комбинированные источники пластовой энергии
- •Движение нефти и газа в залежи
- •Явления, связанные с разработкой залежи
- •Максимально эффективный темп добычи
- •Коэффициент продуктивности
- •Уравнение материального баланса
- •Сверхвысокопродуктивные скважины
- •Малорентабельные скважины и залежи
- •Эксплуатационный период скважин и залежей
- •Вторичные методы разработки залежей
- •Добыча газа
- •Попутный газ
- •Свободный газ
- •Экономические и правовые вопросы
- •Заключение
- •Цитированная литература
- •Часть четвертая Геологическая история нефти и газа
- •Глава 11 Происхождение нефти и газа
- •Граничные условия
- •Неорганическое происхождение нефти и газа
- •Органическое происхождение нефти и газа
- •Современные теории органического происхождения нефти и газа
- •Природа органического материнского вещества
- •Современное органическое вещество
- •Органическое вещество неморского происхождения
- •Превращение органического вещества в нефть и газ
- •Деятельность бактерий
- •Теплота и давление
- •Изменение нефти под влиянием теплоты и давления
- •Заключение
- •Цитированная литература
- •Глава 12 Миграция и аккумуляция нефти и газа
- •Геологические условия миграции и аккумуляции
- •Дальность миграции
- •Первичная миграция
- •Вода, выжимаемая из глин и сланцев
- •Циркуляция воды
- •Седиментационная и переотложенная нефть
- •Вторичная миграция
- •Перенос частиц нефти и газа водой
- •Явления, связанные с капиллярным давлением и давлением вытеснения
- •Плавучесть
- •Влияние растворенного газа на миграцию нефти
- •Аккумуляция
- •Наклонные водонефтяные контакты
- •Литологические и стратиграфические барьеры¹
- •Вертикальная миграция
- •Время аккумуляции
- •Приток нефти и газа
- •Заключение
- •Цитированная литература
- •Часть пятая Использование данных нефтегазовой геологии на практике
- •Глава 13 Глубинная геология
- •Типы глубинных карт
- •Структурные карты и разрезы
- •Карты изопахит ( карты равных мощностей)
- •Карты фаций
- •Палеогеологические карты
- •Геофизические карты
- •Геохимические карты
- •Другие типы глубинных карт
- •Счетно-решающие машины
- •Сухие скважины
- •Заключение
- •Цитированная литература
- •Глава 14 Нефтегазоносные провинции
- •Характер отложений
- •Теория углеродного коэффициента
- •Седиментационные бассейны
- •Нефте- и газопроявления
- •Несогласия
- •Зоны выклинивания проницаемых отложении
- •Региональные своды
- •Локальные ловушки
- •Заключение
- •Цитированная литература
- •Глава 15 Перспективы нефтегазоносности¹
- •Открытие
- •Геологические факторы
- •Экономические факторы
- •Субъективные факторы
- •Заключение
- •Цитированная литература
- •Общие работы
- •Приложение Словарь специальных терминов1
- •Сокращения, принятые в английской литературе по нефти и газу
- •Литература
- •Дополнительный список литературы
Вторичная миграция
При рассмотрении вторичной миграции нефти и газа через коллекторы и аккумуляции их в залежи, так же как при изучении первичной миграции, возникает множество разнообразных проблем. Эти проблемы касаются: 1) переноса нефти и газа водой в процессе вторичной миграции, 2) явлений, связанных с капиллярным давлением и давлением вытеснения, 3) плавучести нефти и газа, 4) влияния растворенного газа на миграцию нефти, 5) аккумуляции нефти и газа в залежи, 6) наклонных водо-нефтяных контактов, 7) стратиграфических барьеров, 8) вертикальной миграции, 9) времени аккумуляции. Некоторые из этих вопросов рассматриваются ниже.
Перенос частиц нефти и газа водой
Воды в любом водоносном горизонте, который можно рассматривать в качестве потенциально нефтегазоносного пласта, находились или находятся и в настоящее время в движении. Скорость и направление движения воды определяются разницей величин гидравлического потенциала зон питания и разгрузки, водопропускной способностью пласта и расположением области минимального гидравлического потенциала. II скорость, и направление движения воды, несомненно, неоднократно менялись в течение геологического времени в результате постоянных изменений структуры, деформации слоев, эрозии и геохимических условий. Движение флюидов находится в зависимости от распространения пористых и проницаемых пород, зон тектонических нарушений и несогласий или систем трещин. Микроскопические и субмикроскопические частички нефти и газа, захваченные движущейся водой, должны переноситься до тех пор, пока не будет встречено препятствие в виде структурной или литологической ловушки, либо пока в результате изменения давления, температуры и объема смеси не произойдет отделение нефти и газа от воды и объединение их в более крупные частицы и агрегаты, обнаруживающие уже способность к всплыванию (плавучесть).
Явления, связанные с капиллярным давлением и давлением вытеснения
Основным условием миграции крупных скоплений нефти в гидрофильном коллекторе является превышение величины капиллярного давления на контакте нефть - вода над величиной давления вытеснения воды из крупных пор, трещин, капилляров и т.п. При любом сочетании нефти, воды и порового пространства величина давления вытеснения Pd является постоянной. С другой стороны, капиллярное давление зависит от степени плавучести нефти, градиентов давления, длины и степени непрерывности нефтяной фазы. Всякий раз, когда эти силы оказываются достаточными для того, чтобы капиллярное давление превысило давление вытеснения, водо-нефтяной контакт будет двигаться сквозь смежные поры, т.е. будет происходить миграция нефти.
Для количественной оценки условий миграции нефти необходимо вычислить разницу между капиллярным давлением на переднем крае движущейся нефти и в тыловой ее части. На фиг. 12-3 показан случай, когда силы, вызывающие миграцию
Фиг. 12-3. Нарушение первоначальной формы нефтяной капли, необходимое для про талкивания ее через сужение в соседнюю пору.
изолированной
капли нефти, отсутствуют или влияют
очень слабо. В левойчасти фигуры
капиллярное давление равно
и примерно одинаково
в точках А,
В
и С,
о чем свидетельствует почти одинаковый
радиус кривизны r
в каждой точке. В правой части фигуры
видно нарушение первоначальной формы
капли, сужение ее в точке А,
предшествующее началу миграции этой
капли в соседнюю справа пору. В этом
случае капиллярное давление на переднем
крае начинающей двигаться капли выразится
как
а капиллярное давление в тыловой части капли ‑
где rс ‑ эффективный радиус капилляра, соединяющего смежные поры, а rр ‑ эффективный радиус поры. Разница в величинах капиллярных давлений в передней и тыловой частях капли ∆Рc равна
Если предположить, что средний радиус капилляра, соединяющего смежные поры, rс составляет от ½ до ¼ радиуса поры rр, то величина ∆Рc будет лежать в пределах
Если принять rс равным ⅓×rр, то величина ∆Рc станет равной 4γ×cosΘ / rр.
При краевом угле смачивания Θ, равном 60°, cosΘ = ½ и ∆Рc = 2 γ / rр.
Таблица 12-2
Разница капиллярных давлений, необходимая для миграции нефти, дин/см²
Межфазное натяжение γ, дин/см |
∆Рc = 2 γ / rр |
||||
|
Очень грубо зернистый песок, rр=0,02 см |
Грубозернистый песок, rр=0,01 см |
Среднезернистый песок, rр=0,005 см |
Тонкозернистый песок, rр=0,002 см |
Очень тонкозернистый песок, rр=0,001 см |
30 |
3000 |
6000 |
12 000 |
30 000 |
60 000 |
25 |
2500 |
5000 |
10 000 |
25 000 |
50 000 |
20 |
2000 |
4000 |
8 000 |
20 000 |
40 000 |
10 |
1000 |
2000 |
4 000 |
10 000 |
20 000 |
5 |
500 |
1000 |
2 000 |
5 000 |
10 000 |
1 |
100 |
200 |
400 |
1000 |
2 000 |
В табл. 12-2 приведены результаты расчета этой средней величины разности капиллярных давлений, необходимой для осуществления миграции нефти в различных условиях.
Рассмотрим возможность возникновения необходимой разницы капиллярных давлений в результате движения воды в коллекторе. Если, как показано на фиг. 12-3, нефть присутствует в виде изолированных капель в отдельных порах и если вода движется горизонтально, то разница в капиллярных давлениях эквивалентна величине падения давления от данной поры до следующей. Нормальный гидродинамический градиент 2 м/км (10 фут/миля² приводит к образованию разницы в капиллярных давлениях от 0,1 дин/см) для грубозернистых песков до 0,02 дин/см² для тонкозернистых песков. Максимальный гидродинамический градиент 20 м/км (100 фут/миля) должен создать разницу в капиллярных давлениях соответственно от 1,0 дин/см² до 0,2 дин/см². Сравнивая эти данные с данными, приведенными в табл. 12-2, можно видеть, что обычные гидродинамические градиенты слишком малы для того, чтобы вызвать миграцию нефти. Необходимы силы в тысячи раз более мощные, чтобы изолированные капли нефти началрг мигрировать из одной поры в другую.
Сила всплывания (плавучести) сама по себе тоже недостаточна для миграции изолированной нефтяной капли. Давление всплывания (pw‑pо) gz дин/см², образует разницу в капиллярных давлениях для капли нефти плотностью 0,876 (30°API) всего 7,4 дин/см² в грубозернистых песках и 1,5 дин/см² в тонкозернистых песках (z ‑ вертикальный интервал, занятый нефтяной фазой). Таким образом, чтобы нефть мигрировала, силы плавучести должны быть в тысячи раз мощнее или сама нефтяная фаза должна быть значительно больше, чем изолированная в единичной поре капля. На фиг. 12-4 показано значение степени непрерывности нефтяной фазы для эффекта плавучести нефти, который способствует ее миграции.
Обычный гидродинамический градиент и силы плавучести неспособны обеспечить миграцию изолированной в одиночной поре нефтяной капли, но они легко приводят в движение более значительные сплошные массы нефти, занимающие тысячи пор. Например, если нефтяная фаза распространяется по вертикали на 5,4 м, градиент потенциометрической поверхности в 2 м/км образует разницу в капиллярных давлениях до 10 000 дин/см², что вполне достаточно для миграции этой нефти. Силы плавучести для нефти плотностью 0,876 образуют такую же разницу капиллярных давлений в случае, если распространение нефтяной фазы по вертикали достигает всего 68 см. Следовательно, протяженность непрерывной нефтяной фазы в 1-10 м обеспечивает условия, необходимые для миграции этой нефти под воздействием обычных сил, существующих в природе.
Был проведен и записан на кинопленку [22] интересный опыт, показывающий природу микроскопического движения нефти сквозь сосуд, заполненный стеклом и шариками люцита (органического стекла). Когда нефть и вода двигались со скоростью 0,5-300 м в сутки, было видно, что движение каждой жидкости происходило по самостоятельной сетке пор и каналов. Несмотря на то что эти скорости были больше, чем те, которые можно ожидать в природе, опыт хорошо иллюстрирует особенности движения жидкостей в случае преодоления капиллярного давления.