
- •Введение.
- •1. Общие сведения об электрорадиоматериалах.
- •1.1 Классификация материалов.
- •1.По назначению:
- •5.. По химическому составу:
- •6. По применению:
- •1.2 Нормативно- техническая документация (нтд)
- •1.3 Правила оценки свойств материалов.
- •1.4 Общие сведения о строении материалов.
- •1.5 Кристаллические вещества. Их свойства и характеристики.
- •1.6 Дефекты кристаллического строения.
- •1.7 Анизотропия кристаллов.
- •1.8 Процесс кристаллизации металлов.
- •1.9 Понятия о сплавах.
- •1.10 Свойства и характеристики электрорадиоматериалов.
- •1.Электрические характеристики
- •2. Механические характеристики.
- •Где: f- усилие, с которым шарик вдавливался в материал
- •3. Тепловые характеристики.
- •1.11 Коррозия металлов и сплавов. Меры защиты от коррозии.
- •2. Проводниковые материалы.
- •2.1 Классификация проводниковых материалов.
- •1. По агрегатному состоянию:
- •2. По типу проводимости:
- •3. По применению:
- •2.2 Электрофизические свойства проводников.
- •Материалы высокой удельной проводимости.
- •2.3.1 Медь и ее сплавы. Свойства. Применение.
- •2. Латунь.
- •2.3.2 Алюминий и его сплавы. Свойства. Применение.
- •2.3.3 Благородные металлы.
- •Материалы высокого удельного сопротивления.
- •3. Диэлектрические материалы.
- •3.1 Физико-химические свойства диэлектриков.
- •3.2 Электрофизические свойства диэлектриков.
- •3.2.1 Основным электрофизическим свойством конденсаторных диэлектриков является поляризация.
- •2. От частоты приложенного напряжения.
- •3.2.2 Электропроводность в диэлектриках.
- •3.2.3 Потери энергии в диэлектриках.
- •Iобщ Тангенс угла определяет потери энергии в диэлектрике
- •Твердые органические диэлектрики. Органические диэлектрики получают двумя способами:
- •3.3.1 Полимеризационные синтетические материалы.
- •Полимерные углеводороды.
- •Фторорганические полимеры.
- •3.3.2 Поликонденсационные синтетические материалы.
- •3.3.3 Пластмассы.
- •3.3.4 Электроизоляционные лаки, эмали, компаунды.
- •Твердые неорганические диэлектрики.
- •Стекло.
- •Керамика (Изучить самостоятельно)
- •Слюда (Изучить самостоятельно)
- •Ситаллы. (Изучить самостоятельно)
- •3.5 Активные диэлектрики
- •3.5.1. Электреты.
- •Термоэлектреты.
- •Фотоэлектреты.
- •Пьезоэлектрические материалы ((Изучить самостоятельно)
- •Сегнетоэлектрические материалы. (Изучить самостоятельно)
- •4. Полупроводниковые материалы.
- •4.1 Свойства полупроводников.
- •4.2 Простые полупроводники.
- •4.3 Сложные полупроводники.
- •Это соединение бора, индия, галлия, алюминия (III гр.) с азотом, фосфором, сурьмой, мышьяком (Vгр.). Широко используются следующие материалы:
- •5. Магнитные материалы
Твердые неорганические диэлектрики.
Стекло.
В РЭА широко применяются стекла неорганического происхождения. Они представляют собой сплавы специально подобранных оксидов. По роли в процессе стеклообразования оксиды делят на три группы:
1. Оксиды-стеклообразователи. Могут образовывать стекла без дополнительных добавок. (оксид кремния, оксид фосфора, оксид германия и т.д.)
По стеклообразующим оксидам именуют и сами стекла. Например: стекло на основе оксида SiO2 называют силикатным.
2. Оксиды-модификаторы. Вводят в состав стекла по технологическим соображениям. Например: оксиды щелочных металлов натрия и калия вводят для снижения температуры варки стекла.
Промежуточные оксиды. Сами стекол не образуют, но могут придать им специфические свойства. Например, цвет.
Основными характеристиками стекол являются:
1. Температура размягчения (300о –1700оС)
2. Температурный коэффициент линейного расширения ТКL. При соединении стекол с различными материалами необходимо, чтобы ТКL были примерно равными, чтобы не произошло растрескивание стекла в процессе эксплуатации.
3. Предел прочности на растяжение и на сжатие.
4. Твердость
5. Электрическая прочность стекла Епр.(35-45 МВ/м)
6.Удельное электрическое сопротивление (1014-1016Ом*м)
В зависимости от назначения существуют следующие виды стекол:
Электровакуумные стекла. Применяются для изготовления баллонов электрических, электронных и газоразрядных ламп, кинескопов и т.д. Название вакуумных стекол определяется не составом стекла, а материалом, с которым близки по значению ТКL.
Например: вольфрамовые стекла их ТКL близок по значению к ТКL вольфрама.
Изоляторные стекла. Используют для герметизации выводов радиоэлементов, для изготовления изоляционных подложек и различных изоляторов.
Стеклоэмали – стекловидные покрытия, которые наносят для защиты от коррозии, для изоляции выводов электровакуумных приборов. Используют в качестве диэлектрика в конденсаторах малой емкости.
Стекловолокно. Получают из расплава стекла методом вытягивания в тонкую нить. Применяется для изготовления стеклоткани, изоляции монтажных проводов, в качестве наполнителя в пластмассах.
Световоды. Световедущее волокно, состоящее из двух слоев. Внутри световедущая жила с высоким показателем преломления, снаружи – изоляционная оболочка с низким коэффициентом преломления. Применяется для передачи информации.
Керамика (Изучить самостоятельно)
Слюда (Изучить самостоятельно)
Ситаллы. (Изучить самостоятельно)
3.5 Активные диэлектрики
3.5.1. Электреты.
Электреты – это диэлектрики, которые длительное время создают в окружающем пространстве электрическое поле за счет предварительной электризации или поляризации.
Первые электреты были получены в 20е годы прошлого столетия из смеси воска и смол.
В зависимости от способа получения различают следующие виды электретов:
Термоэлектреты.
Получают охлаждением расплавленного или нагретого диэлектрика в сильном электрическом поле. При охлаждении подвижность зарядов значительно снижается и диэлектрик сохраняет остаточную поляризацию длительное время.
Электроэлектреты.
Получают воздействием на диэлектрик сильного электрического поля при комнатной температуре. Запряженный поверхностный слой получают за счет бомбардировки свободными зарядами поверхности диэлектрика.