Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Бондаренко А.П. Основы радиационной экологии. Часть 2.doc
Скачиваний:
41
Добавлен:
19.11.2019
Размер:
1.49 Mб
Скачать

1 Ионизирующее действие радиационных излучений

В первой части пособия мы рассмотрели явление ионизации, как способность некоторых частиц, обладающих достаточно большой энергией, выбивать электроны с внешних оболочек атомов. Ионизирующее излучение (ИИ) - это потоки частиц и квантов электромагнитной энергии, прохождение которых через вещество приводит к возбуждению его атомов, и к ионизации вещества. Ионизация электрически нейтральных атомов и молекул обуславливает образование положительных и отрицательных ионов и свободных электронов.

1.1 Ионизация в газе и жидкости

Для разделения нейтрального невозбуждённого атома (молекулы) на две или более заряженные частицы, т. е. для его ионизации, необходимо затратить некоторую энергию, которую называют энергией ионизации. Для всех атомов данного элемента (или молекул данного химического соединения), ионизирующихся из основного состояния одинаковым образом (с образованием одинаковых ионов), энергия ионизации одинакова. Простейший акт ионизации - отщепление от атома (молекулы) одного электрона и образование положительного иона – рисунок 1.

На рисунке 1 показано, что электрон выбивается энергией γ –кванта, который должен обладать значительной энергией, чтобы не просто перевести электрон на более высокую энергетическую орбиту, а удалить его за пределы сил притяжения ядра. Энергию ионизации в объект облучения могут переносить не только γ –кванты, но и электроны, мезоны, протоны, нейтроны, другие частицы и их античастицы.

Присоединение электронов к нейтральным атомам или молекулам (образование отрицательного иона), в отличие от других актов ионизации, может сопровождаться как затратой, так и выделением энергии; в последнем случае говорят, что атомы (молекулы) данного вещества обладают сродством к электрону.

 Если энергия ионизации сообщается ионизуемой частице другой частицей (электроном, атомом или ионом) при их столкновении, то ионизацию называется ударной. Вероятность ударной ионизации (характеризуемая эффективным поперечным сечением ионизации) зависит от рода ионизуемых и бомбардирующих частиц и от их кинетической энергии. До некоторого минимального (порогового) значения кинетической энергии эта вероятность равна нулю, при ее увеличении выше порога она вначале быстро возрастает, достигает максимума, а затем убывает.

Если энергии, передаваемые ионизуемым частицам в столкновениях, достаточно велики, возможно образование из них, наряду с однозарядными, и многозарядных ионов (многократная ионизации). При столкновениях атомов и ионов с атомами может происходить ионизация не только бомбардируемых, но и бомбардирующих частиц.

Ионизация может вызываться не только частицами, налетающими извне. Когда энергия теплового движения атомов (молекул) вещества достаточно велика, они могут ионизовать друг друга при взаимных столкновениях - происходит термическая ионизация. Значительной интенсивности она достигает при температурах ~103 - 104K, например, в дуговом разряде, ударных волнах, в звёздных атмосферах.

Процессы, в которых ионизуемые частицы получают энергию ионизации от фотонов (квантов электромагнитного излучения), называют фотоионизацией. Если атом (молекула) невозбуждён, то энергия ионизующего фотона h (h - постоянная Планка,  - частота излучения), должна быть не меньше энергии ионизации. Для всех атомов и молекул в газах и жидкостях эта величина энергии такова, что ей удовлетворяют лишь ультрафиолетовые и более жёсткие фотоны. Однако фотоионизацию наблюдают и при h < W, (W - энергия ионизации), например при облучении видимым светом.

Объясняется это тем, что она может иметь характер ступенчатой ионизации: вначале поглощение одного фотона возбуждает частицу, после чего взаимодействие со следующим фотоном приводит к ионизации. В отличие от ударной ионизации, вероятность фотоионизации максимальна именно при пороговой энергии фотона h < W, а затем с ростом частоты падает. Максимум сечения фотоионизации в 100—1000 раз меньше, чем при ударной ионизации. Меньшая вероятность компенсируется во многих процессах фотоионизации значительной плотностью потока фотонов, и число актов ионизации может быть очень большим.

Ионизованные газы и жидкости обладают электропроводностью, что, с одной стороны, лежит в основе разнообразных применений процессов ионизации, а с другой стороны, даёт возможность измерять степень ионизации этих сред, т. е. отношение концентрации заряженных частиц в них к исходной концентрации нейтральных частиц.

Процессом, обратным ионизации, является рекомбинация ионов и электронов - образование из них нейтральных атомов и молекул. Защищенный от внешних воздействий газ при обычных температурах в результате рекомбинации очень быстро переходит в состояние, в котором степень его ионизации пренебрежимо мала. Поэтому поддержание заметной ионизации в газе возможно лишь при действии внешнего ионизатора (потоки частиц, фотонов, нагревание до высокой температуры). При определённой концентрации заряженных частиц ионизованный газ превращается в плазму, резко отличающуюся по своим свойствам от газа нейтральных частиц.

Особенность ионизации жидких растворов состоит в том, что в них молекулы растворённого вещества распадаются на ионы уже в самом процессе растворения без всякого внешнего ионизатора, за счёт взаимодействия с молекулами растворителя. Взаимодействие между молекулами приводит к самопроизвольной ионизации и в некоторых чистых жидкостях (вода, спирты, кислоты).