Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Uch_posobie_EMS_2.doc
Скачиваний:
80
Добавлен:
19.11.2019
Размер:
3.96 Mб
Скачать

13.2. Управление параметрами радиосигналов

С целью обеспечения возможно большего числа пользователей качественной радиосвязью в мобильных сетях связи используют управление параметрами радиосигналов. Управление на системном уровне позволяет регулировать уровень помехи по совмещенному каналу и получать требуемое качество приема полезных сигналов при одновременной работе значительного числа абонентов. В качестве управляемых параметров могут быть использованы такие параметры сигналов, как передаваемая мощность, частота, вид кодирования и модуляции и т. п., а также такой параметр излучения, как поляризация. В настоящее время поляризация используется для снижения уровня помех обычно между стационарными системами. При этом управление поляризацией отсутствует. Просто системы используют разные, как правило, ортогональные поляризации сигналов. В подвижных системах связи управление поляризацией сигналов и приемных антенн не используется.

Наиболее широко в системах подвижной радиосвязи используется управление мощностью излучения передатчиков. В системах GSM, например, реализовано управление мощностью излучения передатчиков абонентских станций, а в системах CDMA – управление мощностью излучения как абонентских, так и базовых станций.

Управление мощностью в системе связи подразумевает выбор такой мощности передатчика, при которой обеспечивается требуемая рабочая характеристика внутри этой системы. В качестве такой характеристики могут выступать скорость передачи данных в линии связи, емкость или пропускная способность линии связи, область обслуживания и др. В зависимости от электромагнитной обстановки на линии связи получить нужную характеристику можно, используя, как увеличенное, так и пониженное значение излучаемой мощности. Увеличение мощности передатчика повышает отношение сигнал/шум в приемнике, для которого сигнал этого передатчика является полезным. Это снижает частоту ошибки при приеме бита информации в цифровой линии связи, уменьшает влияние замираний на качество приема полезного сигнала и т. п. Однако увеличение мощности передатчика имеет и отрицательные стороны. К ним, в частности, относится увеличение помех между пользователями. В широкополосных сотовых сетях связи, таких как сети CDMA, где пользователи сети используют одну частоту, но разные коды, число пользователей, которое может работать в пределах соты, а также размер соты, ограничены уровнем помехи, присутствующей в сети. Увеличение уровня помехи приводит к снижению пропускной способности и размера соты. Даже в системах множественного доступа с разделением частот, где пользователи в пределах соты используют разные частоты, помеха может иметь место между разными сотами и снижать возможности повторного использования частот.

Управление мощностью позволяет избежать значительных помех между разными сотами. В благоприятной для приема полезного сигнала электромагнитной обстановке этому может способствовать, в частности, снижение уровня излучаемой мощности до значения, обеспечивающего требуемое значение рабочей характеристики линии связи. Хороший алгоритм управления мощностью позволяет сбалансировать достоинства и недостатки, связанные с изменением мощности в сторону ее увеличения или уменьшения.

Еще одним способом избежать недопустимых помех по совмещенному каналу является управление частотами базовых и абонентских станций. Это можно сделать, используя соответствующие схемы распределения частот каналов и алгоритмы управления ими. Схемы распределения каналов назначают каналы сотам сети таким образом, чтобы обеспечивалась пропускная способность сети при поддержании минимального отношения сигнал/помеха. Схемы можно разделить на три категории в зависимости от того, как разделяются соты, использующие совмещенные каналы:

 фиксированное распределение каналов;

 динамическое распределение каналов;

 смешанное распределение каналов.

При фиксированном распределении каналов все доступные каналы разбивают на группы и группу назначают каждой соте для ее исключительного использования. Рассмотренные ранее методы частотно-территориального планирования, где каждому средству назначалась одна частота, представляют частный случай фиксированного распределения радиочастотных каналов. Очевидно, что аналогичные операции могут быть выполнены и по отношению к группам частот. Простая схема фиксированного распределения каналов, когда каждой соте назначают одно и тоже число каналов, формируя равномерное распределение каналов, является эффективной, если трафик в такой сети распределен равномерно. Однако в реальных сотовых системах трафик далек от равномерного, и такая схема может привести к высокой вероятности блокировки связи (отказа в обслуживании) в сотах с высоким значением трафика, в то время как в сотах с низким трафиком радиочастотные каналы будут недоиспользованы.

Чтобы адаптироваться к неравномерной плотности трафика в сети, число каналов, присваиваемых каждой соте, может меняться в зависимости от ожидаемого в ней трафика.

Способ, который может быть использован при фиксированном распределении каналов, чтобы управлять неравномерным трафиком, состоит в заимствовании каналов. Сота, которая использовала все свои каналы, может заимствовать на время свободный канал у соседних сот, если взятый взаймы канал не создает помех существующим вызовам.

Схемы, использующие заимствование, можно разделить на простые и гибридные (составные). В простой схеме заимствования любой свободный канал в любой соте может быть заимствован другой сотой, нуждающейся в дополнительном канале для обслуживания поступающих запросов. В гибридной схеме заимствования все каналы, присвоенные каждой соте, делят на две группы: локальные каналы и каналы, разрешенные для заимствования. Группа локальных каналов используется для обслуживания данной соты. Каналы этой группы не могут быть заимствованы другими сотами. Только каналы, входящие в состав группы каналов, разрешенных для заимствования, могут быть использованы соседними сотами сети в случае необходимости. Существует несколько стратегий заимствования каналов. Алгоритмы, реализующие ту или иную стратегию заимствования, различаются сложностью, гибкостью и рабочими характеристиками: емкостью трафика, для которого предпочтительно использование алгоритма заимствования и вероятностью блокировки (отказа) обслуживания.

Схемы динамического распределения каналов разработаны, чтобы адаптироваться к кратковременным изменениям трафика. В отличие от схем с фиксированным распределением при динамическом распределении отсутствует фиксированная связь между каналами и сотами. Все каналы хранятся в центральном общем фонде и назначаются сотам при поступлении новых вызовов. По окончании обслуживания вызова использованный канал возвращается в центральный фонд. В схемах динамического распределения каналов канал может быть использован только, если удовлетворяются ограничения на уровень помех.

В зависимости от типа управления схемы динамического распределения каналов можно разбить на централизованные и распределенные. В централизованных схемах динамического распределения каналов по поступившему запросу канал из центрального фонда назначает центральный контроллер. Распределенные схемы вместо централизованной информационной базы используют либо локальную информацию из окрестных сот о каналах, доступных в данное время, либо результаты измерений уровня сигнала.

Гибридные (составные) схемы распределения каналов представляют комбинации схем фиксированного и динамического распределения каналов. В гибридных схемах каналы, которые имеет система, группируют в фиксированное и динамическое множества. Каналы, принадлежащие фиксированному множеству, назначают сотам, используя схемы фиксированного распределения каналов. Каналы динамического множества хранят в общем фонде для будущих запросов. Если нужно обслужить запрос, а у соты нет номинальных каналов, соте назначают канал из динамического множества.

Следует заметить, что в настоящее время сложные схемы управления выбором рабочих каналов в сетях связи не имеют такого широкого применения, как схемы управление мощностью передатчиков. Однако появляющиеся новые стандарты на системы связи начинают применять и этот механизм управления радиочастотным ресурсом, обеспечивающий требуемое качество работы РЭС, образующих сеть, и более эффективное использование ресурса. В частности, стандарт IEEE 802.11h поддерживает динамический выбор частот в беспроводной локальной сети.

Механизмы управления параметрами сигналов не только обеспечивают ЭМС сетей, охваченных этими механизмами, но и позволяют улучшить рабочие характеристики сетей.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]