Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
7
Добавлен:
02.05.2014
Размер:
33.79 Кб
Скачать

К у р с о в а я р а б о т а К1

Вариант 26.

По заданным уравнениям движения точки М установить вид ее траектории и момента времени t=t1 (с) найти положение точки на траектории, ее скорость, полное касательное и нормальное ускорения, а также радиус кривизны траектории.

Дано: x=х(t)=8cos2(pt/6)+2; y=y(t)=-8sin2(pt/6)-7; t1=1.

Решение:

1. Получим уравнение движения точки М в координатной форме исключив параметр t из уравнеий.

x=8cos2(pt/6)+2 => cos2(pt/6)=(x-2)/8

sin2(pt/6)=1- cos2(pt/6)=1-(x-2)/8

y(x)=-8(1-(x-2)/8)-7=-8+x-2-7=x-17

Траекторией точки является прямая

2. Поределим положение точки на траектории

в момент времени t=1

x=8cos2(p/6)+2=8

y= x-17=-9

3. Найдем скорость точки М:

=16*(-sin(pt/6))* (p/6)

=-16*cos(pt/6))* (p/6)

=16(pt/6)

U(t=1)=16p/6

  1. Поскольку траекторией точки М является прямая то радиус кривизны траектории равен бесконечности.

  1. Отсюда . Следовательно =16p/6

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.

Соседние файлы в папке Яблонский К1 вариант 26