
- •Вопрос 1.
- •Вопрос 2.
- •Вопрос 3.
- •Вопрос 4.
- •Вопрос 5. Кодирование текстовой информации
- •Вопрос 6. Мера количества информации Направления оценки количества информации
- •Структурные меры информации
- •Вопрос 7. Классификация информации
- •Вопрос 8. Вопрос 9.
- •Представление графических данных в двоичном коде
- •Вопрос 13. Логические выражения могут быть простыми и сложными.
- •Вопрос 16. Принципы работы вычислительной системы
- •Вопрос 17. Поколение информационных устройств обработки информации Поколение информационных устройств обработки информации
- •Вопрос 24. Внешняя память - это память, предназначенная для длительного хранения программ и данных. Целостность содержимого взу не зависит от того, включен или выключен компьютер
Вопрос 16. Принципы работы вычислительной системы
В основу построения большинства компьютеров положены следующие принципы, сформулированные
Джоном фон Нейманом:
- принцип использования двоичной системы представления данных,
- принцип программного управления,
- принцип однородности памяти,
- принцип адресности.
Понятие и основные виды архитектуры ЭВМ
Архитектура вычислительной машины (англ. сomputer architecture) – концептуальная структура вычислительной машины, определяющая проведение обработки информации и включающая методы преобразовани.
Шинная (магистральная) архитектура ЭВМ
Наличие интеллектуальных контроллеров внешних устройств стало важной отличительной чертой машин третьего и четвертого поколений.
Контроллер можно рассматривать как специализированный процессор, управляющий работой внешнего устройства. Такой процессор имеет собственную систему команд. Например, контроллер накопителя на гибких магнитных дисках (дисковода) умеет позиционировать головку на нужную дорожку диска, читать или записывать сектор, форматировать дорожку и т.п. Результаты выполнения каждой операции заносятся во внутренние регистры памяти контроллера и могут быть в дальнейшем прочитаны центральным процессором.Центральный процессор при необходимости произвести обмен выдает задание на его осуществление контроллеру. Дальнейший обмен информацией может протекать под руководством контроллера без участия центрального процессора. Последний получает возможность «заниматься своим делом», т.е. выполнять программу дальше
Вопрос 17. Поколение информационных устройств обработки информации Поколение информационных устройств обработки информации
В период развития цифровых технологий были разработаны компьютеры самых разных типов. Многие из них давно забыты, но другие оказали сильное влияние на развитие современных вычислительных систем. Здесь мы дадим краткий обзор некоторых этапов развития вычислительных машин, чтобы показать, как человеческая мысль пришла к современномом пониманию компьютерных технологий.
Устройства, облегчающие счет или запоминание его результатов, известны давно, но нас будут интересовать только устройства для вычислений, которые автоматически выполняют заложенные в них программы. Поэтому мы не рассматриваем здесь такие устройства, как счеты, механические арифмометры и электронные калькуляторы.
Первая счетная машина с хранимой программой была построена французским ученым Блезом Паскалем в 1642 г. Она была механической с ручным приводом и могла выполнять операции сложения и вычитания. Немецкий математик Готфрыд Лейбниц в 1672 г. построил механическую машину, которая могла делать также операции умножения и деления. Впервые машину, работающую по программе, разработал в 1834 г. английский ученый Чарльз Бэббидж. Она содержала запоминающее устройство, вычислительное устройство, устройство ввода с перфокарт и печатающее устройство. Команды считывались с перфокарты и выполняли считывание данных из памяти в вычислительное устройство и запись в память результатов вычислений. Все устройства машины Бэббиджа, включая память, были механическими и содержали тысячи шестеренок, при изготовлении которых требовалась точность, недоступная в XIX в. Машина реализовала любые программы, записанные на перфокарте, поэтому впервые для написания таких программ потребовался программист. Первым программистом была англичанка Ада Ловлейс, в честь которой уже в наше время был назван язык программирования Ada.
В XX в. начала развиваться электроника и ее возможности немедленно взяли на вооружение разработчики вычислительных машин. С построения вычислительных машин, базовая система элементов которых была построена на электронных компонентах, начинается отсчет поколений цифровых вычислительных машин. Отметим,что деление периода развития цифровой техники на этапы связано, в основном, с переводом базовой системы элементов на новые технологии производства электронных компонентов.
Вопрос 18. Внутримашинный системный интерфейс -система связи и сопряжения узлов и блоков ЭВМ меж собой - представляет собой совокупность электрических линий связи (проводов), схем сопряжения с компонентами компа, протоколов (алгоритмов) передачи и преобразования сигналов. Есть два варианта организации внутримашинного интерфейса. 1. Многосвязный интерфейс: каждый блок ПК связан с иными блоками своими локальными проводами; многосвязный интерфейс применяется, обычно, лишь в простых бытовых ПК. 2. Односвязный интерфейс: все блоки ПК соединены вместе через общую либо системную шину. В подавляющем большинстве современных ПК в качестве системного интерфейса употребляется системная шина. Структура и состав системной шины были рассмотрены ранее. Важными многофункциональными чертами системной шины являются: количество обслуживаемых ею устройств и ее пропускная способность, т.е. очень вероятная скорость передачи информации. Пропускная способность шины зависит от ее разрядности (есть шины 8-, 16-, 32- и 64-разрядные) и тактовой частоты, на которой шина работает. Вопрос 19. 1. Быстродействие, производительность, тактовая частота. Единицами измерения быстродействия служат: • МИПС (MIPS - Mega Instruction Per Second) - миллион операций над числами с фиксированной запятой (точкой); • МФЛОПС (MFLOPS - Mega FLoating Operations Per Second) - миллион операций над числами с плавающей запятой (точкой); • КОПС (KOPS - Kilo Operations Per Second) для низкопроизводительных ЭВМ - тысяча некоторых усредненных операций над числами; • ГФЛОПС (GFLOPS - Giga FLoating Operations Per Second) - млрд операций в секунду над числами с плавающей запятой (точкой). 2. Разрядность машинки и кодовых шин интерфейса. Разрядность - это наибольшее количество разрядов двоичного числа, над которым сразу может выполняться машинная операция, в том числе и операция передачи информации; чем больше разрядность, тем, при иных равных критериях, будет больше и производительность ПК. 3. Типы системного и локальных интерфейсов. Различные типы интерфейсов обеспечивают различные скорости передачи информации меж узлами машинки, разрешают подключать различное количество наружных устройств и разные их виды. 4. Емкость оперативной памяти. Емкость оперативной памяти измеряется чаще всего в мб (Мбайт), пореже в кб (Кбайт). Напоминаем: 1 Мбайт = 1024 Кбайта = 10242 б. Почти все современные прикладные программы при оперативной памяти емкостью меньше 8 Мбайт просто не работают или работают, но чрезвычайно медлительно. Следует иметь в виду, что повышение емкости основной памяти в 2 раза, кроме всего остального, дает увеличение действенной производительности ЭВМ при решении сложных задач приблизительно в 1,7 раза.
Вопрос 20. Персональный компьютер (ПК) предназначен для хранения и переработки информации. Информация может представлять собой текст, таблицы, рисунки, фотографии, звукозаписи и т. п. Информация хранится и обрабатывается в цифровом виде. Единица измерения информации - байт. Один байт (1б) соответствует примерно одному символу текста. Для удобства введены также более крупные единицы измерения информации: килобайт (Кб), мегабайт (Мб), гигабайт (Гб).
Современный ПК включает в себя следующие элементы:
системный блок;
монитор;
клавиатура;
мышь;
принтер;
сканер.
Кроме перечисленных, в состав ПК могут входить модем или факс-модем, плоттер, устройства воспроизведения и записи звука и некоторые другие устройства.
Системный блок
В системном блоке размещаются основные устройства ПК, осуществляющие переработку и хранение информации. Непосредственно переработку информации производит процессор, размещенный на материнской плате системного блока. Основная характеристика процессора - его быстродействие, иначе называемое «тактовая частота». Единица измерения тактовой частоты - мегагерц (МГц), Современные офисные ПК оснащены процессорами с тактовой частотой 200...400 МГц. Кроме того, на материнской плате системного блока расположено оперативное запоминающее устройство (ОЗУ), или оперативная память1. ОЗУ хранит информацию, в данный момент перерабатываемую процессором. Необходимо отметить, что информация в оперативной памяти хранится только при включенном ПК. После выключения ПК вся информация из ОЗУ пропадает. Основная характеристика ОЗУ - объем хранимой информации. Современные офисные ПК оснащены ОЗУ объемом 32...64 Мб. Постоянное хранение информации производится на жестком диске2, который также называют «винчестер». Основная характеристика жесткого диска - объем хранимой информации. Современные офисные ПК оснащены жестким диском объемом 3...7 Гб. Для работы с внешними носителями информации системный блок имеет 1 или 2 дисковода для дискет3, а также устройство для работы с лазерными компакт-дисками4. В последнее время используются почти исключительно дискеты размером 3,5" с объемом хранимой информации 1,44 Мб. Иногда еще встречаются дискеты размером 5" с объемом хранимой информации до 1,2 Мб. Компакт-диск может содержать информацию объемом до 640 Мб. Кроме перечисленных устройств, в системном блоке расположены и другие устройства, обеспечивающие работу ПК: блок питания, видеоплата, контроллеры, платы управления внешними устройствами.
Монитор
Монитор служит для отображения информации. Подавляющее число современных мониторов цветные. Большинство мониторов оснащено электронно-лучевой трубкой и работает по принципу телевизора. Монитор имеет собственную кнопку включения и выключения, а также кнопки или регуляторы для настройки яркости, контрастности и размера изображения. Современные офисные ПК имеют мониторы с размером экрана по диагонали 15" (38 см) или 17" (43 см).
Клавиатура
Клавиатура предназначена для ввода информации и управления ПК. В настоящее время чаще всего используются так называемые «стандартные клавиатуры 101/102 клавиши». На клавиатуре имеются алфавитно-цифровые клавиши, предназначенные для ввода букв, цифр, знаков препинания, некоторых математических и специальных символов. Расположение алфавитно-цифровых клавиш соответствует стандартной пишущей машинке. Ввод прописных букв производится при нажатой клавише [Shift]. Для переключения клавиатуры в верхний регистр используют клавишу [CapsLock]. Включение этой клавиши отмечается индикатором в правом верхнем углу клавиатуры. Для подтверждения выбранной команды, перехода к новому абзацу при вводе текста используют клавишу [Enter]. Для отказа от выполнения — клавишу [Esc]. Для перемещения курсора используют клавиши , , , , [Home], [End], [PageDown], [PageUp]. Для удаления символа слева от курсора используют клавишу [Backspace], расположенную над клавишей [Enter]. Часто на клавиатуре вместо названия этой клавиши изображена стрелка влево [<-]. Для удаления выделенного объекта или удаления символа справа от курсора используют клавишу [Delete]. Клавиши [Ctrl] и [Alt] используют, как правило, в комбинации с другими клавишами. Функциональные клавиши от [F1] до [F12] могут иметь разное назначение, в зависимости от используемой в данный момент программы. Однако, клавиша [F1] практически во всех случаях вызывает справочную систему.
Мышь
Мышь предназначена для перемещения курсора по экрану и управления различными объектами. В настоящее время чаще всего встречаются двухкнопочные мыши.
Принтер
Принтеры служат для вывода документов на бумагу. В современном офисе чаще всего используют лазерные принтеры. Лазерный принтер позволяет печатать до 10 страниц в минуту, обеспечивая высокое качество печати. Струйные принтеры работают медленнее, качество печати на них ниже. В то же время, струйные принтеры обеспечивают сравнительно недорогую многоцветную печать. Матричные принтеры в современных офисах практически не используются.
Сканер
Сканер предназначен для ввода в ПК рисунков, фотографий, схем и других изображений. Помимо этого, сканер, при наличии специальной программы, позволяет вводить и распознавать текстовые материалы. В настоящее время повсеместно используют планшетные сканеры. Ручные сканеры уже практически не встречаются.
Вопрос 21. Логическая структура микропроцессора, т. е. конфигурация составляющих микропроцессор логических схем и связей между ними, определяется функциональным назначением. Именно структура задает состав логических блоков микропроцессора и то, как эти блоки должны быть связаны между собой, чтобы полностью отвечать архитектурным требованиям. Срабатывание электронных блоков микропроцессора в определенной последовательности приводит к выполнению заданных архитектурой микропроцессора функций, т. е. к реализации вычислительных алгоритмов. Одни и те же функции можно выполнить в микропроцессорах со структурой, отличающейся набором, количеством и порядком срабатывания логических блоков. Различные структуры микропроцессоров, как правило, обеспечивают их различные возможности, в том числе и различную скорость обработки данных. Вопрос 22. Запоминающее устройство — носитель информации, предназначенный для записи и хранения данных. В основе работы запоминающего устройства может лежать любой физический эффект, обеспечивающий приведение системы к двум или более устойчивым состояниям. Классификация
По форме записанной информации запоминающие устройства (ЗУ) делятся на:
аналоговые и
цифровые запоминающие устройства.
По устойчивости записи и возможности перезаписи ЗУ делятся на:
Постоянные (ПЗУ), содержание которых не может быть изменено конечным пользователем (например, BIOS). ПЗУ в рабочем режиме допускает только считывание информации.
Записываемые (ППЗУ), в которые конечный пользователь может записать информацию только один раз (например, CD-R).
Многократно перезаписываемые (ПППЗУ) (например, CD-RW).
Оперативные (ОЗУ) — обеспечивают режим записи, хранения и считывания информации в процессе её обработки. Быстрые, но дорогие ОЗУ (SRAM) строят на триггерах, более медленные, но более дешёвые разновидности ОЗУ — динамические ЗУ (DRAM) строят на элементах состоящих из ёмкости (конденсатора) и полевого транзистора, используемого в качестве ключа разрешения записи-чтения. В обоих видах ЗУ информация исчезает после отключения от источника питания (например, тока).
По типу доступа:
С последовательным доступом (например, магнитные ленты).
С произвольным доступом (RAM; например, оперативная память).
С прямым доступом (например, жёсткие диски).
С ассоциативным доступом (специальные устройства, для повышения производительности баз данных).
По геометрическому исполнению:
дисковые (магнитные диски, оптические, магнитооптические);
ленточные (магнитные ленты, перфоленты);
барабанные (магнитные барабаны);
карточные (магнитные карты, перфокарты, флэш-карты, и др.)
печатные платы (карты DRAM, картриджи).
Цифровые запоминающие устройства — устройства, предназначенные для записи, хранения и считывания информации, представленной в цифровом коде.
К основным параметрам цифровых ЗУ относятся информационная ёмкость (битов, тритов и т. д.), потребляемая мощность, время хранения информации, быстродействие.
Самое большое распространение цифровые запоминающие устройства приобрели в компьютерах (компьютерная память). Кроме того, они применяются в устройствах автоматики и телемеханики, в приборах для проведения экспериментов, в бытовых устройствах (телефонах, фотоаппаратах, холодильниках, стиральных машинах и т. д.), в пластиковых карточках, замках. Вопрос 23.
Классификация структур данных м.б. выполнена по различным признаками.
1) По сложности: простые иинтегрированные. Простые (базовые, примитивные) структуры - это такие, которые не могут быть распределены на составные части. Структурированные (интегрированные, композитные, сложные) - такие структуры данных, составными частями которых есть другие структуры данных - простые ли, в свою очередь, интегрированные. Интегрированные структуры данных конструируются программистом.
2). По способу представления: физическая и логическая. Физическая структура данных - это способ физического представления данных в памяти компьютера. Логическая или абстрактная структура - это рассмотрение структуры данных без учета его представления в машинной памяти. В общем случае между логической и соответствующей ей физической структурами существует расхождения, степень которого зависит от самой структуры и особенностей той среды, в котором она должна быть отображенной. Вследствие этого расхождения существуют процедуры, которые осуществляют отображение логической структуры в физическую, и, наоборот, физической структуры в логическую.
3). По наличию связей между элементами данных: несвязные и связные. Несвязные структуры характеризуются отсутствием связей между элементами структуры. Связные структуры характеризуются наличием связи. Примерами несвязных структур есть векторы, массивы, строки, стеки, очереди; примеры связных структур - связные списки.
4). По изменчивости: статические, полустатические, динамические. Изменчивость, то есть изменение числа элементов и (ли) связей между элементами структуры. Статические - к этой группе относят массивы, множества, записи, таблицы. Полустатические - это стеки, очереди, деки, дерева. Динамические - линейные и разветвленные связные списки, графы, дерева.
5). По характеру упорядоченности элементов в структуре: линейные инелинейные. Линейные структуры в зависимости от характера взаимного расположения элементов в памяти разделяют на структуры с последовательнымраспределением элементов в памяти (векторы, строки, массивы, стеки, очереди) и структуры с произвольным связным распределением элементов в памяти (односвязные и двусвязные линейные списки). Нелинейные структуры - многосвязные списки, дерева, графы.
6). По виду памяти, используемой для сохранности данных: структуры данных для оперативной и для внешней памяти. Структуры данных для оперативной памяти - это данные, размещенные в статической и динамической памяти компьютера. Все вышеприведенные структуры данных - это структуры для оперативной памяти. Структуры данных для внешней памяти называют файловыми структурами или файлами. Примерами файловых структур есть последовательные файлы, файлы, организованные разделами, В- деревья.
Тип данных однозначно определяет:
а) структуру хранения данных указанного типа, то есть распределение памяти и представления данных в ней, с одной стороны, и интерпретацию двоичного представления, из другого; б) допустимые значения, которые может иметь объект описываемого типа; в) допустимые операции, которые могут быть применимые к объекту описываемого типа.