Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лпз №1.docx
Скачиваний:
4
Добавлен:
19.11.2019
Размер:
860.42 Кб
Скачать

Лаборторная работа №1

Однофазный трансформатор

Задание:

  1. Устройство и рабочий процесс однофазного трансформатора

  2. Уравнение напряжение трансформатора

  3. Уравнение магнито движущих сил и токов

1. Принцип действия и устройство однофазного трансформатора

Работа трансформатора основана на использовании явления взаимоиндукции. Трансформатор (рис.1) имеет обычно две магнитно-связанные обмотки 2-2 и 3-3 с разными числами витков, помещенные для усиления магнитной связи на стальном, замкнутом магнитопроводе – сердечнике 1. Сердечник для уменьшения потерь энергии от вихревых токов набирается из стальных листов толщиной 0,5-0,35 мм, а при повышенной частоте тока – из более тонких листов (0,2-0,1 мм). Листы, перед сборкой, покрываются с двух сторон лаком для изоляции друг от друга. Трансформаторная сталь содержит 4-5% кремния, при этом сильно уменьшаются потери от гистерезиса и вихревых токов.

рис.1 Однофазный трансформато

Те части сердечника, на которых располагаются обмотки, называются стержнями, а части, замыкающие их, называются ярмом. Внутреннее пространство между стержнями и ярмом служит для размещения обмоток и называется окном.

Сборка сердечника производится «внахлестку». На рис.2 показаны два слоя листов, которые накладываются друг на друга при сборке сердечника трансформатора. При такой сборке достигается минимальный воздушный зазор в стыках.

рис.2 Расположение листов стали однофазного трансформатор при сборке

Листы предварительно стягиваются изолированными болтами в пакеты сначала так, чтобы на стержни можно было надеть изготовленные обмотки (рис.3), а затем окончательно, чтобы после установки обмоток замкнуть магнитопровод. Сечение стержней, получаемое при этом, показано на рис.4 – квадратное при малой мощности, или крестовидное, приближающееся к кругу, при средней и большой мощности трансформаторов.

рис.3 Сборка сердечника трансформатора

рис.4 Сечение сердечников трансформаторов

Обмотки трансформатора представляют собой катушки разных конструкций. Различают обмотку низшего напряжения (НН), рассчитанную на низшее напряжение трансформатора, которая помещается ближе к стержню, и обмотку высшего напряжения (ВН), рассчитанную на высшее напряжение и помещаемую поверх обмотки (НН), концентрически с ней.

На рис.1 обмотки ВН и НН показаны сдвинутыми друг относительно друга для упрощения рисунка.

В однофазных трансформаторах (рис.1) каждая обмотка делится пополам и помещается на двух стержнях. Обе половины обмотки НН и обмотки ВН соединяются так, чтобы э.д.с. половин обмоток складывались.

Начала и концы обмоток трансформаторов обозначаются буквами латинского алфавита. Начала обмоток обозначают А, В, С и а, b, с,а концы – X, Y, Z и x, y, z. Заглавные буквы приняты для обмотки высшего напряжения, а строчные – для обмотки низшего напряжения (рис.1)

Та обмотка, к которой энергия подводится, называется первичной, а та, от которой энергия отдается потребителю, называется вторичной. Энергия передается с первичной обмотки на вторичную при помощи магнитного потока, связывающего обмотки. Если напряжение вторичной обмотки меньше, чем первичной, то трансформатор называется понижающим; в обратном случае он будет повышающим.

Таким образом, трансформатор, показанный на рис.1 – понижающий. Однако если к обмотке ах подать энергию при номинальном для этой обмотки напряжении, а к обмотке АХ подключить потребителя, то трансформатор будет повышающим.

Трансформатор с сердечником рассмотренного выше типа называется стержневым. Однако существуют трансформаторы броневого типа (рис.5), у которых магнитопровод разветвлен и охватывает обмотки как бы броней. Обмотки ВН и НН таких трансформаторов изготовляются в виде плоских катушек, размещающихся на одном и том же стержне. Трансформаторы броневого типа применяются, например, в радиотехнических устройствах.

рис.5 Броневой трансформатор

Номинальной мощностью трансформатора называется мощность его вторичной обмотки, обозначенная на щитке трансформатора и выраженная в вольт-амперах или киловольт-амперах.

2. Уравнения трансформатора

Уравнения идеального трансформатора

Идеальный трансформатор — трансформатор, у которого отсутствуют потери энергии на нагрев обмоток и потоки рассеяния обмоток. В идеальном трансформаторе все силовые линии проходят через все витки обеих обмоток, и поскольку изменяющееся магнитное поле порождает одну и ту же ЭДС в каждом витке, суммарная ЭДС, индуцируемая в обмотке, пропорциональна полному числу её витков. Такой трансформатор всю поступающую энергию из первичной цепи трансформирует в магнитное поле и, затем, в энергию вторичной цепи. В этом случае поступающая энергия равна преобразованной энергии:

Где

P1 — мгновенное значение поступающей на трансформатор мощности, поступающей из первичной цепи,

P2 — мгновенное значение преобразованной трансформатором мощности, поступающей во вторичную цепь.

Соединив это уравнение с отношением напряжений на концах обмоток, получим уравнение идеального трансформатора:

Таким образом получаем, что при увеличении напряжения на концах вторичной обмотки U2, уменьшается ток вторичной цепи I2.

Для преобразования сопротивления одной цепи к сопротивлению другой, нужно умножить величину на квадрат отношения. Например, сопротивление Z2 подключено к концам вторичной обмотки, его приведённое значение к первичной цепи будет

Данное правило справедливо также и для вторичной цепи:

3. Уравнение магнито движущих сил и токов

Логическая цепочка работы трансформатора под нагрузкой

При подключении нагрузки во вторичной цепи начинает протекать ток , при этом в сердечнике возникает размагничивающий магнитный поток Фр, противоположный по направлению к основному. Это приводит к уменьшению ЭДС в первичной цепи. В электромагнитной системе нарушается равновесие , что приводит к возрастанию потребляемого тока из сети , т.е. к самобалансированию системы и поток восстанавливается:

следует уравнение магнитодвижущих сил (МДС): где

- ток цепи намагничивания (ток “холостого” хода).

уравнения ЭДС обмотки при прямоугольной форме напряжения:

Лабораторная работа № 2

3Х фазные трансформаторы

Задание:

1: Схемы и группы соединения обмоток 3х фазного трансформатора

2: Условия параллельной работы трансформаторов

3:Приведение параметров вторичной обмотки трансформатора

1. Схемы и группы соединения обмоток 3х фазного трансформатора

При эксплуатации трансформаторов в электрических системах необходимо знать угол сдвига по фазе напряжений обмоток ВН и НН. Этот угол понимается как угол между напряжениями обмоток ВН и НН, измеренными на одноименных выводах, например, между напряжением обмотки ВН на выводах А и В и напряжением обмотки НН на выводах а и В

При эксплуатации трансформаторов в электрических системах необходимо знать угол сдвига по фазе ЭДС обмоток высшего и низшего напряжений. Этот угол понимается как угол между ЭДС обмоток ВН и НН, измеренными на одноименных выводах, например, между ЭДС обмотки ВН на выводах А и В и ЭДС обмотки НН на выводах а и b.

Рис. 1. Определение группы соединения обмоток

Одно из возможных взаимных расположений комплексов линейных напряжений АВ и аb трехфазных трансформаторах показано на рис. 1 (направление от А к В и соответственно от а к b говорит о выбранном положительном направлении).

В однофазных трансформаторах угол между напряжениями ВН и НН может быть равен 0 или 180°, линейные напряжения ВН и НН трехфазных трансформаторов могут быть сдвинуты на угол, кратный 30°. Поскольку этот угол во всех случаях кратен 30°, его удобно выражать не в градусах или радианах, а в числе делений часового циферблата (угол между его соседними делениями равен 30°).

Трансформаторы, имеющие одинаковые углы между напряжениями, относятся к одной и той же группе соединения, характеризующейся своим номером.

При этом под номером группы соединения понимается время на часах, минутная стрелка которых совмещена с напряжением ВН и установлена на цифре 0 (12), а часовая совмещена с одноименным напряжением НН (в трехфазных трансформаторах о номере группы судят по углу между линейными напряжениями).

Применение этого правила иллюстрируется рис. 1, на котором показано взаимное расположение напряжения для трансформатора группы соединения П.

В обозначении трансформатора номер группы соединения указывается после обозначения схемы соединения его обмоток (например, Y/Y-0 или Y/A-11). Если обмотки фаз ВН и НН намотаны в одну сторону, то при определенном обозначении выводов ВН в однофазном трансформаторе имеется два возможных варианта маркировки выводов НН, показанных на рис. 2. Поскольку обмотки сцеплены с одним и тем же потоком Ф, напряжения, обозначенные одинаковыми буквами (рис. 2, а), будут находиться в фазе или в противофазе (рис. 2, б). При увеличении потока Ф во времени (рис. 2, а) напряжения ВН и НН направлены от ХкА и от х к а или напряжение ВН направлено в ту же сторону, а напряжение НН — от а кх (рис. 2, б).

Соединение однофазных трансформаторов по рис 2, а относится к группе 0 и обозначается 1/1-0, соединение по рис. 2, б относится к группе 6 и обозначается 1/1-6. Переход от группы 0 к группе 6 не требует пересоединений в самом трансформаторе, он может быть осуществлен путем перемаркировки выводов (а исправлено на х, х на а). В нашей стране однофазные трансформаторы выпускаются только с группой соединения 1/1-0.

Рис, 2. Группы соединения обмоток и обозначения выводов однофазных трансформаторов

Распространяя на фазные обмотки ВН и НН трехфазного трансформатора все сказанное выше о фазах напряжений, можно выявить, что трехфазный трансформатор со схемой соединения Y/Y с маркировкой выводов по рис. 4.7, а относится, как видно из диаграммы напряжений, к группе 0 и обозначается Y/Y-0 (фазное напряжение ах совпадает по направлению с фазным напряжением АХ; by совпадает с BY, cz совпадает с CZ; линейное напряжение ab совпадает с АВ). Круговой перемаркировкой обозначений выводов (без внутренних пересоединений) из группы 0 можно получить группы (4) и [8]

При обозначениях выводов, указанных в круглых скобках (а), (b), (с), линейное напряжение (а) (b) совпадает по направлению с напряжением ЯС(так как эти напряжения измеряются на обмотках, расположенных на одних и тех же стержнях) и трансформатор переходит в группу соединения (4). При обозначениях выводов, указанных в квадратных скобках, напряжение [а] [b] совпадает по направлению с напряжением СА и трансформатор переходит в группу соединения [8]. Переход к соединению Y/Y-6 (рис. 4.7, б) требует переноса нулевой перемычки внутри трансформатора, изменяющей фазу всех напряжений обмотки НН на 180° (напряжение ab находится в противофазе с напряжением АВ). Круговой перемаркировкой выводов из группы 6 получаются группы (10) и [2] (см. на рис. 4.7, б обозначения, указанные в круглых и квадратных скобках). Этим исчерпываются все возможные четные номера групп, которые могут быть получены при соединении Y/Y.

Нечетные номера групп получаются при соединении Y/Д. При обозначениях выводов, указанных без скобок (а, b, с, х, у, z на рис. 4.7, в), линейное напряжение ab, являющееся одновременно фазным напряжением yb, совпадает по направлению с напряжением YB и трансформатор имеет группу соединения II.

Рис. 4.7. Группы соединения трехфазных трансформаторов

Путем круговой перемаркировки обозначений выводов, показанной на рис. 4.7, в, в круглых и квадратных скобках получаются группы (3) и [7] (каждая перемаркировка поворачивает одинаково обозначенное напряжение на угол 120° = 4x30°, изменяя номер группы на 4).

Меняя местами обозначения начала и концов фазных обмоток, можно осуществить переход от группы 11 к группе 5 (рис. 4.7, г — обозначение без скобок) и, наконец, от 5-й группы круговой перестановкой обозначений выводов, показанной на рис. 4.7, г; перейти к группам (9) и [1].

Из всех возможных групп соединения трехфазных двухобмоточных трансформаторов используются только группы 0 и 11 с выводом в случае необходимости нулевой точки звезды (Y/YH-0, Y/Л-11, YH/A-11). Кроме того, ГОСТ 11677-85 предусмотрена группа соединения, в которой треугольником соединены обмотки ВН A/YH-11.

Рис. 4.8. Группа соединения A/Y-11

Рис. 4.9. Изменение группы трансформатора при использовании для обмотки ВН (НИ) схемы и маркировки обмотки НН (ВН)

Как видно из рис. 4.8, в этом случае применяется иной способ образования треугольника, чем при соединении Y/A-11 (А соединяется с Z, в то время как в треугольнике на низкой стороне а соединялось с у). Если бы треугольник на стороне ВН был соединен так же, как треугольник на стороне НН в соединении Y/Д-И по рис. 4.8, то соединение ДА" имело бы группу 1, а не 11.

Представляет интерес выяснить в общем случае, как изменится номер группы, если превратить обмотку НН в обмотку ВН, а обмотку ВН в обмотку НН с сохранением их соединений и маркировки.

Очевидно, угол между линейными напряжениями ВН (АВ) и НН (ab) сохранится и будет равен 30° х/У(рис. 4.9). Но теперь напряжение ab на диаграмме, показанной штриховой линией, будет на такой же угол 30° х ТУ опережать АВ, на который оно отставало на диаграмме, показанной сплошными линиями. Поэтому если отсчитывать угол всякий раз от напряжения АВ до напряжения ab по часовой стрелке, то угол во втором случае 30°х/У' будет углом, дополняющим до 360° угол 30°х/Ув исходном состоянии:

30°хЛГ' + 30°хЛГ= 360°.

Таким образом, номер N' группы трансформатора можно определить

N'r 12-N,

где N — номер группы в исходном состоянии (если N - 11, N' = = 12 — 11 = 1).

Исходной группой для получения группы A/YH-11 (N' = 11) служит группа YH/A-1 (N= 12 -N' - 1), которая, в свою очередь, получается из группы YH/A-11 путем изменения способа образования треугольника (см. ниже).

Рис. 4.10. Влияние способа образования треугольника на группу соединения

Следует заметить, что группа соединения трансформатора зависит не только от порядка маркировки начал и концов обмотки НН, но и от того, каким образом фазные обмотки объединены в треугольник. Треугольник на стороне НН должен образовываться путем соединения вывода а с выводом у; b с z и с с х, как сделано на рис. 4.7 или 4.10 сплошными линиями. Если вместо этого образовать треугольник путем соединения

зажима а с зажимом z, b с х п с с у (рис. 4.10, штриховая линия), то напряжение обмотки НН, например ab, повернется на угол 180 -- 120 = 2 х 30° по часовой стрелке и номер группы соединения увеличится на 2 (при маркировке на рис. 4.10 вместо группы 3 получится группа 3 + 2 = 5). При соединении, показанном сплошными линиями, линейное напряжение ab, являющееся одновременно фазным напряжением, совпадает по направлению с напряжением ZC При соединении, показанном штриховой линией, линейное напряжение ab, являющееся теперь фазным напряжением ах, совпадает по направлению с напряжением BY, т.е. поворачивается по сравнению с прежним соединением на указанный угол 2x30°.

Это правило распространяется на любые другие нечетные группы соединения, и при использовании нерекомендуемого способа образования треугольника вместо группы N получается группа N' = N + 2. Вместо 11 получается 1, а также 5 вместо 3, 9 вместо 7, 3 вместо 1, 7 вместо 5 и 11 вместо 9.

Соединение по схеме зигзаг используется только для обмотки НН, причем стандартизуется только группа Y/ZH-11 с выведенной нулевой точкой у зигзага.

2. Условия параллельной работы трансформаторов

Параллельной работой двух или нескольких трансформаторов называется работа при параллельном соединении их обмоток как на первичной, так и на вторичной сторонах. При параллельном соединении одноименные зажимы трансформаторов присоединяют к одному и тому же проводу сети (рис. 2.7, а).

Рис. 2.7. Включение трансформаторов на параллельную работу

Применение нескольких параллельно включенных трансформаторов вместо одного трансформатора суммарной мощности необходимо для обеспечения бесперебойного энергоснабжения в случае аварии в каком-либо трансформаторе или отключения его для ремонта. Это также целесообразно при работе трансформаторной подстанции с переменным графиком нагрузки, например когда мощность нагрузки значительно меняется в различные часы суток. В этом случае при уменьшении мощности нагрузки можно отключить один или несколько трансформаторов для того, чтобы нагрузка трансформаторов, оставшихся включенными, была близка к номинальной. В итоге эксплуатационные показатели работы трансформаторов (КПД и сosφ2) будут достаточно высокими.

Для того чтобы нагрузка между параллельно работающими трансформаторами распределялась пропорционально их номинальным мощностям, допускается параллельная работа двухобмоточных трансформаторов при следующих условиях: 1. При одинаковом первичном напряжении вторичные напряжения должны быть равны. Другими словами, трансформаторы должны иметь одинаковые коэффициенты трансформации: kI = kII= kIII=… При несоблюдении этого условия, даже в режиме х.х., между параллельно включенными трансформаторами возникает уравнительный ток, обусловленный разностью вторичных напряжений трансформаторов (рис. 2.8, а):

где ZkI и ZkIIвнутренние сопротивления трансформаторов.

Рис. 2.8. Появление напряжения ∆U при несоблюдении условий включения трансформаторов на параллельную работу

При нагрузке трансформаторов уравнительный ток накладывается на нагрузочный. При этом трансформатор с более высоким вторичным напряжением х.х. (с меньшим коэффициентом трансформации) оказывается перегруженным, а трансформатор равной мощности, но с большим коэффициентом трансформации — недогруженным. Так как перегрузка трансформаторов недопустима, то приходится снижать общую нагрузку. При значительной разнице коэффициентов трансформации нормальная работа трансформаторов становится практически невозможной. Однако ГОСТ допускает включение на параллельную работу трансформаторов с различными коэффициентами трансформации, если разница коэффициентов трансформации не превышает ±0,5% их среднего значения:

где — среднее геометрическое значение коэффициентов трансформации.

2. Трансформаторы должны принадлежать к одной группе соединения. При несоблюдении этого условия вторичные линейные напряжения трансформаторов окажутся сдвинутыми по фазе относительно друг друга и в цепи трансформаторов появится разностное напряжение ∆U, под действием которого возникнет значительный уравнительный ток. Так, если включить на параллельную работу два трансформатора с одинаковыми коэффициентами трансформации, но один из них принадлежит к нулевой (Y/Y—0), а другой — к одиннадцатой (Y/A—11) группам соединения, то линейное напряжение U2I первого трансформатора, будет больше линейного напряжения U2II второго трансформатора в раз (U2I / U2II = ). Кроме того, векторы этих напряжений окажутся сдвинутыми по фазе относительно друг друга на угол 30° (рис. 28, б). В этих условиях во вторичной цепи трансформаторов появится разностное напряжение ∆U. Для определения величины ∆U воспользуемся построениями рис. 28, б: отрезок ОА равен U2II/2 или, учитывая, что U2II = U2I / , получим ОА = 0,5U2I. Следовательно, треугольник, образованный векторами напряжений U2I, U2II и ∆U — равнобедренный, а поэтому разностное напряжение ∆U = U2II. Появление такого разностного напряжения привело бы к возникновению во вторичной цепи трансформаторов уравнительного тока, в 15—20 раз превышающего номинальный ток нагрузки, т. е, возникла бы аварийная ситуация. Величина ∆U становится еще большей, если трансформаторы принадлежат нулевой и шестой группам соединения (∆U = 2U2), так как в этом случае векторы линейных вторичных напряжений окажутся в противофазе (см. рис. 2.3, б).

3. Трансформаторы должны иметь одинаковые напряжения к. з.: . Соблюдение этого условия необходимо для того, чтобы общая нагрузка распределялась между трансформаторами пропорционально их номинальным мощностям.

С некоторым приближением, пренебрегая токами х.х., можно параллельно включенные трансформаторы заменить их сопротивлениями к.з. zkI и zkII и тогда от схемы, показанной на рис. 2.9, а, можно перейти к эквивалентной схеме (рис. 2.9, б). Известно, что токи в параллельных ветвях распределяются обратно пропорционально их сопротивлениям:

У множим обе части равенства (2.7) на IIIномUном/(I1номUном), левую часть — на Uном/Uном, а правую часть — на 100/100, получим

Затем преобразуем полученное равенство, имея в виду следующее: I1UHOМ = S1, и I11 Uном = S11фактическая нагрузка первого и второго трансформаторов соответственно, В-А; I1HOМ UHOМ= S1HOМ и I11HOМ UHOМ =S11HOМ номинальные мощности этих трансформаторов, В-A; (I1HOМZkl/UHOМ)100=u1k и (I11HOМZkl1/UHOМ)100=u11k — напряжения к.з. трансформаторов, %. В результате получим

(S1/S1HOМ)( S11/S11HOМ) (2.8)

или

S1/ S11=uk11/uk1 (2.9)

где S1=S1/S1HOМ, S11=S11/S11HOМсоответственно относительные мощности (нагрузки) первого и второго трансформаторов.

рис. 2.9. К понятию о распределении нагрузки при параллельной работе трансформаторов.

Из соотношения (2.9) следует, что относительные мощности (нагрузки) параллельно работающих трансформаторов обратно пропорциональны их напряжениям к.з. Другими словами, при неравенстве напряжений к.з. параллельно работающих трансформаторов больше нагружается трансформатор с меньшим напряжением к.з. В итоге это ведет к перегрузке одного трансформатора (с меньшим uк) и недогрузке другого (с большим uк). Чтобы не допустить перегрузки трансформатора, необходимо снизить общую нагрузку. Таким образом, неравенство напряжений к.з. не допускает полного использования по мощности параллельно работающих трансформаторов

Учитывая, что практически не всегда можно подобрать трансформаторы с одинаковыми напряжениями к.з., ГОСТ допускает включение трансформаторов на параллельную работу при разнице напряжений к.з. не более чем 10% от их среднего арифметического значения. Разница в напряжениях к.з. трансформаторов тем больше, чем больше эти трансформаторы отличаются друг от друга по мощности. Поэтому ГОСТ рекомендует, чтобы отношение номинальных мощностей трансформаторов, включенных параллельно, было не более чем 3:1.

Помимо соблюдения указанных трех условий необходимо перед включением трансформаторов на параллельную работу проверить порядок чередования фаз, который должен быть одинаковым у всех трансформаторов.

3. Приведение параметров вторичной обмотки трансформатора