
- •Раздел 3. Комплексные числа. Интегральное исчисление 267
- •Раздел 3. Комплексные числа. Интегральное исчисление лекция 3.1. Комплексные числа и действия над ними. Алгебраическая, показательная и тригонометрическая формы записи комплексного числа
- •3.1.1. Алгебраическая форма комплексного числа, основные определения
- •3.1.2. Тригонометрическая форма комплексного числа
- •3.1.3. Показательная форма записи комплексного числа
- •3.1.4. Действия над комплексными числами (сложение и вычитание)
- •3.1.5. Умножение комплексных чисел
- •3.1.6. Деление комплексных чисел
- •3.1.7. Возведение в степень
- •3.1.8. Извлечение корня
- •Лекция 3.2. Первобразная и неопределенный интеграл. Геометрический смысл, свойства. Таблица простейших интегралов. Интегрирование подведением под знак дифференциала
- •3.2.1.Определение, геометрическая иллюстрация
- •3.2.2. Простейшие правила интегрирования
- •3.2.3. Таблица интегралов
- •3.2.4. Интегрирование подведение под знак дифференциала
- •Лекция 3.3. Итегрирование заменой переменных. Интегрирование по частям. Многочлены и их свойства. Разложение на линейные квадратные множители
- •3.3.1. Замена переменной (метод подстановки)
- •3.3.2. Интегрирование по частям
- •3.3.3. Интегрирование выражений, содержащих квадратный трехчлен
- •Лекция 3.4. Рациональные функции, их разложение на простейшие дроби. Интегрирование рациональных функций и простейших дробей. Интегрирование некоторых иррациональностей
- •3.4.1. Интегрирование рациональных функций
- •3.4.2. Интегрирование простейших иррациональных функций
- •Лекция 3.5. Интегрирование тригонометрических функций
- •3.5.1. Универсальная подстановка
- •3.5.2. Тригонометрические подстановки
- •3.5.3. Теорема Коши. Заключительные замечания
- •3.5.4. О технике интегрирования
- •Лекция 3.6. Задачи, приводящие к определенному интегралу. Общие идеи интегрального исчисления. Различные типы Определенных интегралов. Теорема существования, свойства
- •3.6.1. Задачи, приводящие к понятию общего интеграла
- •3.6.2. Интергальная сумма, определенный интеграл
- •3.6.3. Теорема о существовании определенного интеграла
- •3.6.4. Геометрический смысл определенных интегралов
- •3.6.5. Свойства определенных интегралов
- •Лекция 3.7. Линейный интеграл, способы вычисления. Формула ньютона–лейбница. Интегрирование по частям и замена переменных. Несобственные интегралы первого и второго рода. Признаки сходимости
- •3.7.1. Производная от линейного интеграла по переменному верхнему пределу
- •3.7.2. Формула Ньютона-Лейбница
- •3.7.3. Интегрирование по частям в линейном интеграле
- •3.7.4. Замена переменной интегрирования в линейном интеграле
- •3.7.5. Несобственные линейные интегралы
- •3.7.5.1. Линейные интегралы с бесконечными пределами (несобственные интегралы первого рода)
- •3.7.5.2 Линейные интегралы от разрывных функций (несобственные интегралы второго рода)
- •3.7.5.3. Признаки сходимости несобственных интегралов
- •Лекция 3.8. Приближенное вычисление определенных интегралов. Формулы прямоугольников, трапеций, симпсона. Формулы численного интегрирования. Оценка погрешности
- •3.8.1. Формула прямоугольников
- •3.8.2. Формула трапеций
- •3.8.3. Формула парабол (формула Симпсона)
- •Лекция 3.9. Вычисление криволинейного, двойного и тройного интегралов путем сведения к линейному
- •3.9.1 Уравнения линий в полярной системе координат
- •3.9.2 Вычисление криволинейного интеграла
- •3.9.3. Объем тел с известным поперечным сечением
- •3.9.4. Вычисление двойного интеграла путем сведения к линейному
- •3.9.5. Сведение тройного интеграла к трехкратному интегрированию
- •Лекция 3.10. Замена переменных в кратных интегралах. Двойной интеграл в полярных координатах. Тройной интеграл в цилиндрических и сферических координатах
- •3.10.1. Общий случай замены переменных в двойном интеграле
- •3.10.2. Двойной интеграл в полярных координатах
- •3.10.3. Общий случай замены переменных в тройном интеграле
- •3.10.4. Тройной интеграл в цилиндрических координатах
- •3.10.5. Тройной интеграл в сферической системе координат
- •Лекция 3.11. Приложения определенных интегралов в геометрии: вычисление длин дуг, площадей, объемов. Применение определенных интегралов
- •3.11.1. Вычисление площадей плоских фигур
- •3.11.2. Вычисление длин линий
- •3.11.3.Вычисление объемов тел
- •3.11.4 Статические моменты и центры тяжести
- •3.11.5. Момент инерции
- •3.11.6. Общая схема применение линейного интеграла к физическим задачам.
- •3.11.7. Давление жидкости на стенку сосуда
- •3.11.8. Работа необходимая для выкачивания воды из сосуда
- •3.11.9. Сила взаимодействия двух точечных масс
- •3.11.10. Кинетическая энергия тела, вращающегося вокруг неподвижной оси
- •3.11.11. Газовые законы
- •3.11.12. Электростатика
- •3.11.13. Закон Архимеда
3.2.2. Простейшие правила интегрирования
Простейшие правила нахождения первообразных основаны на следующих свойствах неопределенного интеграла.
Свойство 1. Производная от неопределенного интеграла равна подынтегральной функции
Свойство 2. Дифференциал от неопределенного интеграла равен подынтегральному выражению. В самом деле:
Свойство 3. Неопределенный интеграл от дифференциала функции равен самой функции плюс постоянная.
Из второго и третьего свойств следует, что символы дифференциала и неопределенного интеграла уничтожают друг друга, будучи примененными последовательно (если отвлечься от постоянного слагаемого в последней формуле).
Свойство 4. Интеграл от суммы конечного числа функций равен сумме интегралов от слагаемых функций:
(3.2.2)
где u, υ,…,ω – функции независимой переменной х.
Свойство 5. Постоянный множитель подынтегральной функции можно вынести за знак интеграла, т.е.:
(3.2.3)
где С – константа.
Пример
4. Вычислить
интеграл
Применяя свойства интеграла, получим:
Хотя каждое промежуточное интегрирование дает произвольное постоянное слагаемое, но их сумма снова будет произвольной постоянной.
Теорема 2. (Об инвариантности формул интегрирования). Всякая формула интегрирования сохраняет свой вид при подстановке вместо независимой переменной любой дифференцируемой функции от нее, т.е. если
то
и
где t = φ(x) – любая дифференцируемая функция от х.
Доказательство. Пусть где F'(x) = f(x).
Возьмем теперь сложную функцию F[φ(x)] = F(t), у которой промежуточным аргументом является дифференцируемая функция t = φ(x). В силу теоремы об инвариантности (неизменности) формы первого дифференциала функции имеем:
dF(t) = F'(t)dt = f(t)dt
Отсюда
Таким образом, переменной интегрирования может быть любая функция от х. Теорема доказана.
В силу этого правила таблица интегралов оказывается справедливой независимо от того, является ли переменная интегрирования независимой переменной или любой дифференцируемой функцией от нее.
3.2.3. Таблица интегралов
1.
2.
2а.
2б.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
или
17.
18.
19.
Таблица интегралов для элементарных функций выписана в предположении, что t может быть как независимой переменной, так и любой дифференцируемой функцией от х, т.е. t = φ(x).
Легко понять, что табличные интегралы можно было бы писать и в виде
3.
5.
6.
и т.п.
Точно
также интеграл
можно записать в любом из видов
Сказанное делает понятным назначение
множителя dx.
Он указывает на переменную интегрирования:
x,
t,
z,
u,
y.
Операция интегрирования значительно сложнее дифференцирования. Интегрирование требует индивидуального подхода к каждой функции.
Вычислить неопределенные интегралы
Пример 5.
Все три интеграла табличные.
Пример 6.
Пример 7.
Пример 8.
Пример 9.
При нахождении первообразных использованы свойства неопределенного интеграла и алгебраические преобразования подынтегральной функции, в результате все интегралы свелись к табличным.