
- •Раздел 3. Комплексные числа. Интегральное исчисление 267
- •Раздел 3. Комплексные числа. Интегральное исчисление лекция 3.1. Комплексные числа и действия над ними. Алгебраическая, показательная и тригонометрическая формы записи комплексного числа
- •3.1.1. Алгебраическая форма комплексного числа, основные определения
- •3.1.2. Тригонометрическая форма комплексного числа
- •3.1.3. Показательная форма записи комплексного числа
- •3.1.4. Действия над комплексными числами (сложение и вычитание)
- •3.1.5. Умножение комплексных чисел
- •3.1.6. Деление комплексных чисел
- •3.1.7. Возведение в степень
- •3.1.8. Извлечение корня
- •Лекция 3.2. Первобразная и неопределенный интеграл. Геометрический смысл, свойства. Таблица простейших интегралов. Интегрирование подведением под знак дифференциала
- •3.2.1.Определение, геометрическая иллюстрация
- •3.2.2. Простейшие правила интегрирования
- •3.2.3. Таблица интегралов
- •3.2.4. Интегрирование подведение под знак дифференциала
- •Лекция 3.3. Итегрирование заменой переменных. Интегрирование по частям. Многочлены и их свойства. Разложение на линейные квадратные множители
- •3.3.1. Замена переменной (метод подстановки)
- •3.3.2. Интегрирование по частям
- •3.3.3. Интегрирование выражений, содержащих квадратный трехчлен
- •Лекция 3.4. Рациональные функции, их разложение на простейшие дроби. Интегрирование рациональных функций и простейших дробей. Интегрирование некоторых иррациональностей
- •3.4.1. Интегрирование рациональных функций
- •3.4.2. Интегрирование простейших иррациональных функций
- •Лекция 3.5. Интегрирование тригонометрических функций
- •3.5.1. Универсальная подстановка
- •3.5.2. Тригонометрические подстановки
- •3.5.3. Теорема Коши. Заключительные замечания
- •3.5.4. О технике интегрирования
- •Лекция 3.6. Задачи, приводящие к определенному интегралу. Общие идеи интегрального исчисления. Различные типы Определенных интегралов. Теорема существования, свойства
- •3.6.1. Задачи, приводящие к понятию общего интеграла
- •3.6.2. Интергальная сумма, определенный интеграл
- •3.6.3. Теорема о существовании определенного интеграла
- •3.6.4. Геометрический смысл определенных интегралов
- •3.6.5. Свойства определенных интегралов
- •Лекция 3.7. Линейный интеграл, способы вычисления. Формула ньютона–лейбница. Интегрирование по частям и замена переменных. Несобственные интегралы первого и второго рода. Признаки сходимости
- •3.7.1. Производная от линейного интеграла по переменному верхнему пределу
- •3.7.2. Формула Ньютона-Лейбница
- •3.7.3. Интегрирование по частям в линейном интеграле
- •3.7.4. Замена переменной интегрирования в линейном интеграле
- •3.7.5. Несобственные линейные интегралы
- •3.7.5.1. Линейные интегралы с бесконечными пределами (несобственные интегралы первого рода)
- •3.7.5.2 Линейные интегралы от разрывных функций (несобственные интегралы второго рода)
- •3.7.5.3. Признаки сходимости несобственных интегралов
- •Лекция 3.8. Приближенное вычисление определенных интегралов. Формулы прямоугольников, трапеций, симпсона. Формулы численного интегрирования. Оценка погрешности
- •3.8.1. Формула прямоугольников
- •3.8.2. Формула трапеций
- •3.8.3. Формула парабол (формула Симпсона)
- •Лекция 3.9. Вычисление криволинейного, двойного и тройного интегралов путем сведения к линейному
- •3.9.1 Уравнения линий в полярной системе координат
- •3.9.2 Вычисление криволинейного интеграла
- •3.9.3. Объем тел с известным поперечным сечением
- •3.9.4. Вычисление двойного интеграла путем сведения к линейному
- •3.9.5. Сведение тройного интеграла к трехкратному интегрированию
- •Лекция 3.10. Замена переменных в кратных интегралах. Двойной интеграл в полярных координатах. Тройной интеграл в цилиндрических и сферических координатах
- •3.10.1. Общий случай замены переменных в двойном интеграле
- •3.10.2. Двойной интеграл в полярных координатах
- •3.10.3. Общий случай замены переменных в тройном интеграле
- •3.10.4. Тройной интеграл в цилиндрических координатах
- •3.10.5. Тройной интеграл в сферической системе координат
- •Лекция 3.11. Приложения определенных интегралов в геометрии: вычисление длин дуг, площадей, объемов. Применение определенных интегралов
- •3.11.1. Вычисление площадей плоских фигур
- •3.11.2. Вычисление длин линий
- •3.11.3.Вычисление объемов тел
- •3.11.4 Статические моменты и центры тяжести
- •3.11.5. Момент инерции
- •3.11.6. Общая схема применение линейного интеграла к физическим задачам.
- •3.11.7. Давление жидкости на стенку сосуда
- •3.11.8. Работа необходимая для выкачивания воды из сосуда
- •3.11.9. Сила взаимодействия двух точечных масс
- •3.11.10. Кинетическая энергия тела, вращающегося вокруг неподвижной оси
- •3.11.11. Газовые законы
- •3.11.12. Электростатика
- •3.11.13. Закон Архимеда
3.11.13. Закон Архимеда
По закону Архимеда подъемная сила, действующая на погруженное твердое тело в жидкость, равна весу вытесненной им жидкости. Вес тела равен: P = S·H·d, где S – площадь поперечного сечения H – высота, d – удельный вес.
Задача. Шар радиуса R с удельным весом d = 1 погружен в воду так, что он касается поверхности. Какую работу надо затратить, чтобы извлечь шар из воды.
Р
ешение.
Фиксируем определенное значение х
= ОВ, по
приращению dx
найдем работу, затраченную на поднятие
цилиндра высотой dx
на величину х.
Основанием
цилиндра является круг, радиус которого
r
= y можно
найти из уравнения окружности:
Раскрывая квадрат получим:
отсюда
тогда
Работа, затраченная на поднятие шара из воды будет равна
В лекциях (3.11., 3.11а., 3.11б.) были рассмотрены две схемы применения определенных интегралов к нахождению геометрических и различных физических величин. Первая основана на приближенном представлении искомой величины в виде интегральной суммы с последующим переходом к пределу (вычисление площадей, длин линий, объемов тел, координат центров тяжести, моментов инерции и т.д.).
Вторая схема основана на составлении «элемента» (дифференциала) рассматриваемой величины.
Примеры на применение этой схемы к решению физических задач авторы старались отобрать так, чтобы облегчить дальнейшее применение интегрального исчисления к специальным дисциплинам.