Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
био.docx
Скачиваний:
14
Добавлен:
18.11.2019
Размер:
149.62 Кб
Скачать

Вопрос №1

Онтогенез. Определение. Типы. Периодизация. Особености онтогенеза человека.

Жизненный цикл = цикл развития - совокупность всех фаз развития, пройдя которые, обычно начиная от зиготы, организм достигает зрелости и становится способным дать начало следующему поколению. (Жизненный цикл - вся последовательность стадий от яйца до появления следующего яйца.)

Под онтогенезом понимают совокупность процессов развития особи (индивидуального развития), начиная от стадии зиготы до конца жизни (смерть или деление одноклеточного организма).

Периодизация онтогенеза затрудняется сложностью самого процесса развития, его неравномерностью (проявляющейся в разном темпе развития и созревания функций в разные фазы онтогенеза), а также гетерохронностью созревания и развития.

Вследствие неравномерности, гетерохронности и различия индивидуальных

темпов развития и созревания граница между стадиями не может быть

точечной, а занимает некоторый временной интервал. причем индивидуальные

различия нарастают в онтогенезе от ранних фаз к более поздним.

Вариативность данных увеличивается по мере подъема от генетического уровня к социальному.

Различают прямое развитие и развитие с превращением (метаморфозом). При прямом развитии родившийся организм является уменьшенной копией взрослой особи, с небольшими отличиями. В этом случае в ходе постэмбрионального развития организм только растет и достигает половой зрелости. При развитии с превращением рождается личинка, устроенная иначе, чем взрослый организм. (Например, гусеницы - личинки бабочек - совершенно не похожи своим строением на взрослых насекомых). Многие органы личинки отсутствуют у взрослой особи. Вырастая, личинка проходит метаморфоз - часть ее органов отмирает, зато развиваются новые органы, свойственные новому организму. Так у земноводных личинкой является головастик, во многих чертах строения сходный с рыбой. В ходе головастик теряет хвост, жабры, приобретает конечности. Иногда личинка может быть устроена значительно сложнее, чем взрослая особь. Например, у морских животных из подтипа личиночнохордовых (асцидий) личинка имеет хорду, развитую нервную систему и свободно плавает в толще воды. Взрослая асцидия не имеет ни хорды, ни сложной нервной системы, плавать не способна и всю жизнь проводит, прикрепившись на дне моря.

55. Дробление, общая характеристика. Особенности молекулярно-генетических и биохимических процессов при дроблении. Нарушения дробления.

Дробле́ние — ряд последовательных митотических делений оплодотворенного или инициированного к развитию яйца. Дробление представляет собой первый период эмбрионального развития, который присутствует в онтогенезе всех многоклеточных животных. При этом масса зародыша и его объём не меняются, оставаясь такими же, как и в начале дробления. Яйцо разделяется на все более мелкие клетки — бластомеры. Характерная особенность дробления — ведущая регуляторная роль цитоплазмы в развитии. Характер дробления зависит от количества желтка и его расположения в яйце.

Вопрос №2.

Строение и функции половых клеток. Морфофизиологические особенности яиц хордовых. Связь строения яйца с типом дробления. Оплодотворение.

Мужские половые клетки (гаметы) – сперматозоиды – образуются в результате сперматогенеза Этот процесс идет в три стадии: размножение в семенниках диплоидных клеток сперматогенной ткани, в результате которого образуются сперматоциты (2n); рост сперматоцитов, сопровождающийся синтезом ДНК и достраиванием второй хроматиды; созревание сперматоцитов, которые делятся мейозом с образованием гаплоидных (n) сперматозоидов. Хромосомные наборы сперматозоидов (человека и других млекопитающих) различаются по половым хромосомам: одни несут Х-, а другие – Y-хромосому. Женские половые клетки (гаметы) – яйцеклетки – образуются в результате оогенеза (гр. оон – яйцо и генезис – рождение). Этот процесс идет в яичниках тоже в три стадии: размножение в яичниках диплоидных клеток оогенной ткани, в результате которого образуются ооциты (2n); рост ооцитов, сопровождающийся синтезом ДНК и построением второй хроматиды хромосом; созревание ооцитов и их деление мейозом. В результате из ооцита образуется одна гаплоидная яйцеклетка с однохроматидными хромосомами (1n1c) и три редукционных (или полярных) тельца. В дальнейшем яйцеклетка участвует в половом процессе, а редукционные тельца отмирают. Процесс образования мужских и женских гамет называется гаметогенезом

Оплодотворение – это процесс слияния сперматозоида с яйцеклеткой с последующим слиянием их ядер и образованием диплоидной зиготы. Биологическое значение этого процесса состоит в том, что при слиянии мужских и женских гамет образуется новый организм, несущий признаки обоих родительских организмов. При образовании гамет в мейозе возникают клетки с разным сочетанием хромосом, поэтому после оплодотворения новые организмы сочетают в себе признаки отца и матери в различных комбинациях. В результате этого значительно увеличивается наследственное разнообразие организмов

56. Дробление, определение. Дробление у представителей Хордовых. Особенности дробления у плацентарных млекопитающих. Внеутробное оплодотворение у человека.

Дробле́ние — ряд последовательных митотических делений оплодотворенного или инициированного к развитию яйца. Дробление представляет собой первый период эмбрионального развития, который присутствует в онтогенезе всех многоклеточных животных. При этом масса зародыша и его объём не меняются, оставаясь такими же, как и в начале дробления. Яйцо разделяется на все более мелкие клетки — бластомеры. Характерная особенность дробления — ведущая регуляторная роль цитоплазмы в развитии. Характер дробления зависит от количества желтка и его расположения в яйце.

Вопрс №3

. Общая характеристика, сущность и основные клеточные механизмы дробления. Нарушения дробления.

Дробле́ние — ряд последовательных митотических делений оплодотворенного или инициированного к развитию яйца. Дробление представляет собой первый период эмбрионального развития, который присутствует в онтогенезе всех многоклеточных животных. При этом масса зародыша и его объём не меняются, оставаясь такими же, как и в начале дробления. Яйцо разделяется на все более мелкие клетки — бластомеры. Характерная особенность дробления — ведущая регуляторная роль цитоплазмы в развитии. Характер дробления зависит от количества желтка и его расположения в яйце.

57. Общая характеристика и основные клеточные механизмы гаструляции. Презумтивные зачатки и их дальнейшее развитие.

Гаструляция — сложный процесс морфогенетических изменений, сопровождающийся размножением, ростом, направленным перемещением и дифференцировкой клеток, в результате чего образуются зародышевые листки (эктодерма, мезодерма и энтодерма) — источники зачатков тканей и органов. Второй после дробления этап онтогенеза. При гаструляции происходит перемещение клеточных масс с образованием из бластулы двухслойного или трёхслойного зародыша — гаструлы.

Тип бластулы определяет способ гаструляции.

Способы гаструляции

Инвагинация — происходит путем впячивания стенки бластулы в бластоцель; характерна для большинства групп животных.

Деляминация (характерна для кишечнополостных) — клетки, находящиеся снаружи, преобразуются в эпителиальный пласт эктодермы, а из оставшихся клеток формируется энтодерма. Обычно деляминация сопровождается делениями клеток бластулы, плоскость которых проходит «по касательной» к поверхности.

Иммиграция — миграция отдельных клеток стенки бластулы внутрь бластоцеля.

Униполярная — на одном участке стенки бластулы, обычно на вегетативном полюсе;

Мультиполярная — на нескольких участках стенки бластулы.

Эпиболия — обрастание одних клеток быстро делящимися другими клетками или обрастание клетками внутренней массы желтка (при неполном дроблении).

Инволюция — вворачивание внутрь зародыша увеличивающегося в размерах наружного пласта клеток, который распространяется по внутренней поверхности остающихся снаружи клеток.

Билет № 5

Оплодотворение. Партеногенез. Формы и распространенность в природе. Половой диморфизм.

Эволюция и онтогенез. Биогенетический закон Мюллера-Геккеля.

Ответы:

1. Оплодотворение – это процесс слияния половых клеток. Процесс оплодотворения складывается из трех последовательных фаз: сближения гамет, активации яйцеклетки, слияния гамет или сингамии. Случайная встреча разных гамет при оплодотворении приводит к тому, что среди особей вида практически невозможно появление двух генотипически одинаковых организмов. Достигаемое с помощью описанных процессов генотипическое разнообразие особей предполагает наследственные различия между ними на базе общего видового генома.

Партеногенез – развитие без оплодотворения. В случае естественного партеногенеза развитие идет на основе цитоплазмы и пронуклеуса яйцеклетки. Особи, формирующиеся из яйцеклетки, имеют либо гаплоидный, либо диплоидный набор хромосом, так как чаще всего в начале дробления срабатывает один из механизмов удвоения числа хромосом. Естественный партеногенез чаще всего случается при незавершенном оплодотворении, т. е. в тех случаях, когда имела место активация яйцеклетки, но ядро сперматозоида не участвовало в оплодотворении. В активированных яйцах используется информация только женского пронуклеуса. Такой вид партеногенеза называют гиногенезом. При искусственном партеногенезе можно удалить женский пронуклеус, и тогда развитие осуществляется только за счет мужских пронуклеусов. Это андрогенез. Потомки наследуют либо только признаки матери при гиногенезе, либо только признаки отца – при андрогенезе. Это указывает на то, что наследственные свойства особи определяются в основном ядром, а не цитоплазмой. Естественный партеногенез явление редкое, и как правило не является единственным способом размножения вида. У пчел, например, он используется как механизм генотипического определения пола: женские особи (рабочие пчелы и царицы) развиваются из оплодотворенных яйцеклеток, а мужские (трутни) – партеногенетически.

Половой диморфизм – это подразделение гамет на яйцеклетки и сперматозоиды, а особей на самок и самцов. Наличие его в природе отражает различия в задачах, решаемых в процессе полового размножения мужской или женской гаметой, самцом или самкой.

3. Исследователи начала XIX в. впервые стали обращать внимание на сходство стадий развития эмбрионов высших животных со ступенями усложнения организации, ведущими от низкоорганизованных форм к прогрессивным. Сопоставляя стадии развития зародышей различных видов и классов хордовых, К. Бар сделал следующие выводы:

1. Эмбрионы животных одного типа на ранних стадиях развития сходны.

2. Они последовательно переходят в своем развитии от более общих признаков типа ко все более частным. В последнюю очередь развиваются признаки, указывающие на принадлежность эмбриона к определенному роду, виду, и, наконец, индивидуальные черты.

3. Эмбрионы разных представителей одного типа постепенно обособляются друг от друга.

Развитие эволюционной идеи в последующем позволило объяснить сходство ранних зародышей их историческим родством, а приобретение ими все более частных черт с постепенным обособлением друг от друга – действительным обособлением соответствующих классов, отрядов, семейств, родов и видов в процессе эволюции.

Сопоставляя онтогенез ракообразных с морфологией их вы­мерших предков, Ф. Мюллер сделал вывод о том, что ныне живущие ракообразные в своем развитии повторяют путь, пройденный их предками. Преобразование онтогенеза в эволюции, по мнению Ф. Мюллера, осуществляется благодаря его удлинению за счет добав­ления к нему дополнительных стадий или надставок. На основе этих наблюдений, а также изучения развития хордовых Э. Геккель (1866) сформулировал основной биогенетический закон, в соот­ветствии с которым онтогенез представляет собой краткое и быстрое повторение филогенеза.

Повторение структур, характерных для предков, в эмбриогенезе потомков названо рекапитуляциями. Рекапитулируют не только морфологические признаки — хорда, закладки жаберных щелей и жаберных дуг у всех хордовых, но и особенности биохимической организации и физиологии. Однако в онтогенезе высокоорганизованных организмов не всегда наблюдается строгое повторение стадий исторического развития, как это следует из биогенетического закона. Так, зародыш человека никогда не повторяет взрослых стадий рыб, земноводных, пресмыкающихся и млекопитающих, а сходен по ряду черт лишь с их зародышами.

Билет № 6

Сперматогенез и овогенез. Цитологическая и цитогенетическая характеристики. Биологическое значение полового размножения.

Критические периоды эмбриогенеза. Аномалии развития.

Ответы:

1. Гаметогенез — процесс образования яйцеклеток (овогенез) и сперматозоидов (сперматогенез) — подразделяется на ряд стадий.

В стадии размножения диплоидные клетки, из которых образу­ются гаметы, называют сперматогониями и овогониями. Эти клетки осуществляют серию последовательных митотических делений, в результате чего их количество существенно возрастает. Сперматогонии размножаются на протяжении всего периода половой зрело­сти мужской особи. Размножение овогоний приурочено главным образом к периоду эмбриогенеза.

Овогонии и сперматогонии, как и все соматические клетки, характеризуются диплоидностью. Если в одинарном, гаплоидном наборе число хромосом обозначить как n, а количество ДНК — как с, то генетическая формула клеток в стадии размножения соответствует 2n2с до 5-периода и 2n4с после него.

На стадии роста происходит увеличение клеточных размеров и превращение мужских и женских половых клеток в сперматоциты и овоциты I порядка. Важным событием этого периода является редупликация ДНК при сохранении неизменным числа хромосом. Последние приобретают двунитчатую структуру, а генетическая формула сперматоцитов и овоцитов I порядка приобретает вид 2п4с.

Основными событиями стадии созревания являются два после­довательных деления: редукционное и эквационное,— которые вместе составляют мейоз. После первого деления образуются сперматоциты и овоциты II порядка (формула п2с), а после второго — сперматиды и зрелая яйцеклетка (пс).

В результате делений на стадии созревания каждый сперматоцит I порядка дает четыре сперматиды, тогда как каждый овоцит I порядка — одну полноценную яйцеклетку и редукционные тельца, которые в размножении не участвуют. Благодаря этому в женской гамете концентрируется максимальное количество питательного материала — желтка.

Процесс сперматогенеза завершается стадией формирования, или спермиогенеза. Ядра сперматид уплотняются вследствие сверхспирализации хромосом, которые становятся функционально инертными. Пластинчатый комплекс перемещается к одному из полюсов ядра. Центриоли занимают место у противоположного полюса ядра, причем от одной из них отрастает жгутик, у основания которого в виде спирального чехлика концентрируются митохонд­рии. На этой стадии почти вся цитоплазма сперматиды отторгается, так что головка зрелого сперматозоида практически ее лишена.

За счет генетического разнообразия половое размножение создает предпосылки к освоению разнообразных условий обитания; дает эволюционные и экологические перспективы; способствует осуществлению творческой роли естественно отбора.

2. В онтоге­нетическом развитии существуют периоды наибольшей чувствительности к повреждающему действию разнообразных факторов. Эти периоды получили название критических, а повреждающие факторы - те­ратогенных. Некоторые ученые полагают, что наиболее чувствительными к самым разнообразным внешним воздействиям являются периоды развития, характеризующиеся активным клеточным делением или интенсивно идущими процессами дифференциации. Установлено, что в некоторые моменты развития зародыши чувст­вительны к ряду внешних факторов, причем реакция их на разные воздействия бывает однотипной.

Критические периоды различных органов и областей тела не совпадают друг с другом по времени. Причиной нарушения развития зачатка является большая чувствительность его в данный момент к действию патогенного фактора, чем у других органов. При этом действие разных факторов может вызвать одну и ту же аномалию.

П.Г. Светлов установил два критических периода в развитии плацентарных млекопитающих. Первый из них совпадает с процес­сом имплантации зародыша, второй — с формированием плаценты. Повреждающее действие во время имплантации приводит к ее нарушению, ранней смерти зародыша и его абортированию. По некоторым данным, 50—70% оплодотворенных яйцеклеток не раз­виваются в период имплантации.

Действие тератогенных факторов во время эмбрионального (с 3 до 8 нед) периода может привести к врожденным уродствам. Чем раньше возникает повреждение, тем грубее бывают пороки разви­тия. При действии тератогенных факторов в фетальном периоде возникают малые морфологические изменения, задержка роста и дифференцировки, недостаточность питания плода и другие функциональные нарушения.

При аномалиях, в отличии от врожденных пороков, нарушение функций органа обычно не наблюдается.

Роль наследственности и среды в онтогенезе. Критические периоды развития. Тератогенные факторы среды.

Ответ 2. Онтогенез, или индивидуальное развитие организма, осуществ­ляется на основе наследственной программы, получаемой через вступившие в оплодотворение половые клетки родителей. В ходе реализации наследственной информации в процессе онтогенеза у организма формируются видовые и индивидуальные морфологические, физиологические и биохимические свойства, иными словами — фенотип. Ведущая роль в формировании фенотипа принадлежит наслед­ственной информации, заключенной в генотипе организма. При этом простые признаки развиваются как результат определенного типа взаимодействия соответствующих аллельных генов.

Наряду с этим результат реализации наследственной программы, заключенной в генотипе особи, в значительной мере зависит от условий, в которых осуществляется этот процесс. Факторы внешней по отношению к генотипу среды могут способствовать или препят­ствовать фенотипическому проявлению генетической информации, усиливать или ослаблять степень такого проявления

Совокупность внутриорганизменных факторов, влияющих на реализацию наследственной про­граммы, обозначают как среду 1-го порядка. Особенно большое влияние на функцию генотипа факторы этой среды оказывают в период активных формообразовательных процессов, прежде всего в эмбриогенезе. С другой стороны, выделяют понятие окружающей среды, или среды 2-го порядка, как совокупности внешних по отношению к организму факторов.

Критические периоды: зигота, имплантация, роды.

Периоды наибольшей чувствительности к повреждающему действию разнообразных факторов получили название критических, а повреждающие факторы — те­ратогенных.

Причиной нарушения развития зачатка является большая чувствительность его в данный момент к действию патогенного фактора, чем у других органов.

П.Г. Светлов установил два критических периода в развитии плацентарных млекопитающих. Первый из них совпадает с процес­сом имплантации зародыша, второй — с формированием плаценты. Имплантация приходится на первую фазу гаструляции, у человека — на конец 1-й —начало 2-й недели. Второй критический период продолжается с 3-й по 6-ю неделю. По другим источникам, он включает в себя также 7-ю и 8-ю недели. В это время идут процессы нейруляции и начальные этапы органогенеза.

Действие тератогенных факторов во время эмбрионального (с 3 до 8 нед) периода может привести к врожденным уродствам. Чем раньше возникает повреждение, тем грубее бывают пороки.

Факторы, оказывающее поврежденное воздействие, не всегда представляют собой чужеродные для организма вещества или действия. Это могут быть и закономерные действия среды, обеспе­чивающие обычное нормальное развитие но в других концентрациях с другой силой, в другое время (кислород, питание, температуру, соседние клетки, гормоны, индукторы, давление, растяжение, электрический ток и проникающее излучение).

2.Периодизация постэмбрионального развития. Период роста и формирования, влияние внешних факторов.

Ответ 2.С момента рождения новой особи начинается период постэмбрионального развития организма.

Онтогенез можно разделить на три периода: дорепродуктивный, репродук­тивный и пострепродуктивный. В дорепродуктивном периоде особь не способна к размножению. В этом периоде происходят наиболее выраженные структурные и функциональные преобразования, реализуется основная часть наследственной ин­формации, организм обладает высокой чувствительностью ко все­возможным воздействиям.

В репродуктивном периоде особь осуществляет функцию поло­вого размножения, отличается наиболее стабильным функциони­рованием органов и систем, а также относительной устойчивостью к воздействиям.

Пострепродуктивный период связан со старением организма и характеризуется ослаблением или полным прекраще­нием участия в размножении.

Дорепродуктивный период подразделяется на 4 периода: эмбриональный, личиночный, метаморфоз и ювенильный. Личиночный период в типичном варианте наблюдается в разви­тии тех позвоночных, зародыши которых выходят из яйцевых оболочек и начинают вести самостоятельный образ жизни, не достигнув дефинитивных (зрелых) черт организации. Метаморфоз состоит в превращении личинки в ювенильную форму. В процессе метаморфоза происходят такие важные морфо-генетические преобразования, как частичное разрушение, пере­стройка и новообразование органов. Ювенильный период начинается с момента завершения метамор­фоза и заканчивается половым созреванием и началом размноже­ния.

Рост – это увеличение общей массы в процессе развития, приводящее к постоянному увеличению размеров организма. Несмотря на возникающие факторы, особь стремится достичь типичного видового размера. Это явление называется эквифинальностью.

Смерть как заключительный этап онтогенеза. Клиническая и биологическая смерть. Реанимация.

. Старение приводит к прогрессивному повышению веро­ятности смерти. Таким образом, биологический смысл старения заключается в том, что оно делает неизбежной смерть организма. Последняя же представляет собой универсальный способ ограни­чить участие многоклеточного организма в размножении.

При прекращении работы сердца и остановке дыхания наступает смерть. Организму не хватает кислорода; недостаток кислорода обусловливает отмирание мозговых клеток. В связи с этим при оживлении основное внимание следует сосредоточить на деятельности сердца и легких.

Смерть состоит из двух фаз - клинической и биологической смерти. Во время клинической смерти, человек уже не дышит, сердце перестает биться, однако необратимые изменения в клетках головного мозга не происходят. Клиническая смерть – это переходное состояние от жизни к смерти.

Различные органы человеческого тела сохраняют способность жить после смерти разное время. Предельный срок клинической смерти 5–6 минут, т.е. время, в течение которого сохраняет жизнедеятельность кора головного мозга. После этого срока наступает биологическая смерть. Если клиническая смерть является обратимым явлением, то биологическая смерть в настоящее время необратима. Реанимация – (от лат. animatio - оживление) восстановление резко нарушенных или утраченных жизненно важных функций организма. Проводится при терминальных состояниях, в том числе при клинической смерти. Реанимация включает: массаж сердца, искусственное дыхание, нагнетание крови в артерии и др. меры.

Ответ №6

Нейруляция — образование нервной пластинки и её замыкание в нервную трубку в процессе зародышевого развития хордовых.

Нейруляция — один из ключевых этапов онтогенеза. Зародыш на стадии нейруляции называетсянейрулой.

Развитие нервной трубки в передне-заднем направлении контролируется специальными веществами — морфогенами (они определяют, какой из концов станет головным мозгом), а генетическая информация об этом заложена в так называемых гомеотических, или гомеозисных генах.

Например, морфоген ретиновая кислота при увеличении её концентрации, способна превратитьромбомеры (сегменты нервной трубки заднего отдела головного мозга) одного вида в другой.

Нейруляция у ланцетников представляет собой нарастание валиков из эктодермы над слоем клеток, становящимся нервной пластинкой.

Нейруляция в многослойном эпителии — клетки обоих слоев опускаются под эктодерму вперемешку, и расходятся центробежно, образуя нервную трубку.

Нейруляция в однослойном эпителии:

Шизоцельный тип (у костистых рыб) — подобен нейруляции многослойного эпителия, за исключением того, что опускаются клетки одного слоя.

У птиц и млекопитающих — нервная пластинка инвагинирует внутрь, и замыкается в нервную трубку.

Дифференцировка зародышевых листков и образование тканей и органов. После обособления, а нередко до завершения процесса обособления трех зародышевых листков начинается их дифференциация на ткани (гистогенез) и органы (органогенез). Эти процессы у разных видов хордовых животных имеют свою специфику, но вместе с тем и много общего. Так, у всех хордовых при гистогенезе из эктодермы образуются нервная ткань, эпителий кожи, а у амниот (рептилий, птиц и Млекопитающих) — также эпителий хориона, серозной оболочки и амниона. Из энтодермы образуется эпителий, выстилающий просвет трубкообразных органов пищеварения, дыхания и мочевой пузырь. За счет энтодермы развивается специфическая, какдвухмаршевая деревянная лестница, железистая ткань застенных пищеварительных желез—печени и поджелудочной железы, а также внутристенные железы. Из мезодермы развиваются скелетная мускулатура и эпителиальный слой серозных оболочек. Из мезодермы путем выселения клеток образуется первичная опорно-трофическая ткань —мезенхима, а из нее вся группа опорно-трофических тканей. За исключением нервной системы, печени, пищеварительных желез и эпителиальной выстилки кишечника все внутренние органы —производные мезодермы. Одновременно с гистогенезом происходит и органогенез. Одними из вервых закладываются у хордовых осевые органы: нервная трубка, хорда и кишечная трубка. Нервная трубка обособляется из эктодермы спинной стороны зародыша. Из нервной трубки в латеральные стороны выселяются клетки, формирующие ганглиозные пластинки, из которых впоследствии развиваются спинномозговые узлы (ганглии). Хорда у разных классов хордовых развивается по-разному, но всегда в виде тяжа располагается вдоль тела зародыша, под нервной трубкой. У головного конца зародыша из материала энтодермы около хорды формируется прехордальная пластинка, из которой в дальнейшем развивается эпителий органов дыхания. Кишечная трубка, местами расширяясь и удлиняясь в виде выпячивания, дает начало пищеводу, желудку, тонкому и толстому отделам кишечника, печени, поджелудочной железе. Кожа развивается из эктодермы и мезенхимы. Сердце, органы половой и выделительной систем образуются из мезодермы и мезенхимы. В процессе эмбриогенеза отдельные признаки появляются не сразу. Еще К- Бэр установил, что чем моложе сравниваемые эмбриональные стадии, тем значительнее сходство. Закономерность, открытая Бэром, известна как явление зародышевого сходства. Вначале появляются свойства, присущие наиболее отдаленным предкам.ак, все животные начинают свое

Морфогене́з (англ. Morphogenesis, от греч. morphê форма и genesis происхождение, или буквально «формообразование») — возникновение и развитие органов, систем и частей тела организмов как в индивидуальном (онтогенез), так и в историческом, илиэволюционном, развитии (филогенез). Изучение особенностей морфогенеза на разных этапах онтогенеза в целях управления развитием организмов составляет основную задачу биологии развития, а также генетикимолекулярной биологиибиохимии, эволюционной физиологии, и связано с изучением закономерностей наследственности.

Процесс морфогенеза контролирует организованное пространственное распределение клеток во время эмбрионального развития организма. Морфогенез может проходить также и в зрелом организме, в клеточных культурах или опухолях. Морфогенез также описывает развитие неклеточных форм жизни, у которых нет эмбриональной стадии в их жизненном цикле. Морфогенез описывает эволюцию структур тела в пределах таксономической группы.

Морфогенетический ответ в организме может быть вызван гормонами, окружающими химическими сигналами широкого диапазона: от продуктов жизнедеятельности других клеток и организмов до токсических веществ и радионуклидов, или механическими воздействиями.

Анамнии (Anamnia) (от греч. an — отрицательная частица и амнион), низшие первичноводные позвоночные животные. К Анамнии относятся: круглоротые, рыбы, земноводные. В отличие от амниот, у Анамнии в процессе эмбрионального развития не возникает зародышевой оболочки — амниона и особого зародышевого органа — аллантоиса. Анамнии связаны в своём существовании с водной средой, в которой они проводят либо всю жизнь, либо начальные стадии (яйцевые и личиночные). Характерные для анамний мезонефрические почки функционируют только у зародышей амниот. Во второй половине эмбрионального развития формируются метанефрические, или тазовые, почки , одновременно развиваются их протоки - мочеточники. У самок амниот редуцируются мезонефрические почки и вольфовы каналы; сохраняются выполняющие функцию яйцеводов мюллеровы каналы. У самцов сохраняется лишь часть мезонефрической почки, становящейся придатком семенника; вольфовы каналы выполняют функцию семяпроводов. В метанефрической почке, по сравнению с мезонефрической, почечные канальцы (нефроны) заметно усложняются. Выделение продуктов распада идет не только путем фильтрации плазмы из капилляров клубочков в просвет боуменовых капсул, но и секрецией железистыми клетками стенок почечных канальцев. Этот фильтрат - первичная моча, проходя по почечному канальцу, существенно изменяется, так как через его стенки идет обратное всасывание воды и абсорбция ряда нужных организму веществ - солей, органических молекул и т. п. Благодаря этому метанефрическая почка амниот не только служит практически единственным органом выделения, но активно участвует в водном и солевом обмене, обеспечивая экономию воды.  У амниот возрастают относительные размеры головного мозга, особенно переднего (где резко возрастает число нервных клеток в дне мозга - в полосатых телах), и мозжечка. У пресмыкающихся и птиц в крыше переднего мозга увеличиваются скопления нервных клеток (зачатки этих скоплений обнаруживаются у земноводных), а у млекопитающих они разрастаются в кору больших полушарий - неопаллиум , где образуются новые высшие мозговые центры. Изменения в деталях строения рецепторов повышают их эффективность. Органы боковой лиции у амниот не развиваются.  Все эти преобразования обеспечивают амниотам, по сравнению с анамниями, в среднем более высокий уровень жизнедеятельности, большую устойчивость по отношению к неблагоприятным изменениям внешней среды. Усложнение высшей нервной деятельности находит свое выражение в возрастании роли индивидуального опыта, в усложнении внутривидовой организации и межвидовых взаимоотношений. Более высокий уровень жизнедеятельности сделал возможным более активные отношения с абиотическими и биотическими факторами окружающей среды и позволил амниотам заселить практически все биотопы суши. Некоторые группы пресмыкающихся, млекопитающих и птиц вторично освоили водные биотопы, успешно конкурируя в них с первичноводными позвоночными - анамниями.

ПРОВИЗОРНЫЕ ОРГАНЫ ЗАРОДЫШЕЙ ПОЗВОНОЧНЫХ

Провизорные, или временные, органы образуются в эмбриогенезе ряда представителей позвоночных для обеспечения жизненно важных функций, таких, как дыхание, питание, выделение, движение и др. Недоразвитые органы самого зародыша еще не способны функционировать по назначению, хотя обязательно играют какую-то роль в системе развивающегося целостного организма. Как только зародыш достигает необходимой степени зрелости, когда большинство органов способны выполнять жизненно важные функции, временные органы рассасываются или отбрасываются.

Время образования провизорных органов зависит от того, какие запасы питательных веществ были накоплены в яйцеклетке и в каких условиях среды происходит развитие зародыша. У бесхвостых земноводных, например, благодаря достаточному количеству желтка в яйцеклетке и тому, что развитие идет в воде, зародыш осуществляет газообмен и выделяет продукты диссимиляции непосредственно через оболочки яйца и достигает стадии головастика. На этой стадии образуются провизорные органы дыхания (жабры), пищеварения и движения, приспособленные к водному образу жизни. Перечисленные личиночные органы дают возможность головастику продолжить развитие. По достижении состояния морфофункциональной зрелости органов взрослого типа временные органы исчезают в процессе метаморфоза.

ОНТОГЕНЕЗ — ОСНОВА ФИЛОГЕНЕЗА

Опираясь только на основной биогенетический закон, невозможно объяснить процесс эволюции: бесконечное повторение пройденного само по себе не рождает нового. Так как жизнь существует на Земле благодаря смене поколений конкретных организмов, эволюция ее протекает благодаря изменениям, происходящим в их онтогенезах. Эти изменения сводятся к тому, что конкретные онтогенезы отклоняются от пути, проложенного предковыми формами, и приобретают новые черты.

К таким отклонениям относятся, например, ценогенезы — приспособления, возникающие у зародышей или личинок и адаптирующие их к особенностям среды обитания. У взрослых организмов ценогенезы не сохраняются. Примерами ценогенезов являются роговые образования во рту личинок бесхвостых земноводных, облегчающие им питание растительной пищей. В процессе метаморфоза у лягушонка они исчезают и пищеварительная система перестраивается для питания насекомыми и червями. К ценогенезам у амниот относят зародышевые оболочки, желточный мешок и аллантоис, а у плацентарных млекопитающих и человека — еще и плаценту с пуповиной.

Вопрос №7

Амнион, околоплодные воды. Амниотическая полость — произ­водное эмбриобласта — формиру­ется на 15—16-й день после опло­дотворения из эктобластического пузырька, который примыкает к наружному листку зародышевого диска.  К концу 1 триместра беремен­ности в результате опережающего роста амнион постепенно сливается с хорионом.  На ранних сроках беременности амниотическая жидкость (около­плодные воды) представляет собой в основном фильтрат плазмы крови матери. В образовании амниотической жидкости важная роль при­надлежит также секрету амниотического эпителия. На более поздних стадиях внутриутробного развития в продукции амниотической жид­кости принимают участие легкие и почки плода (в конце беременности плод продуцирует мочу в количестве 600-800 мл/сут).  По мере прогрессирования беременности амниотическая полость уве­личивается из-за накопления в ней околоплодных вод. Объем увеличива­ется неравномерно. В 10 нед беременности объем амниотической жидкости составляет в среднем 30 мл, в 13—14 нед — 100 мл, в 18 нед — 400 мл и т.д. Максимальный объем околоплодных вод отмечается к 37—38 нед беремен­ности и составляет в среднем 1000 мл; в дальнейшем он постепенно умень­шается. При перенашивании беременности (более 41 нед) уменьшение объема амниотической жидкости (менее 800 мл) служит одним из диагнос­тических критериев перенашивания.  В начале беременности околоплодные воды представляют собой бес­цветную прозрачную жидкость. В дальнейшем амниотическая жидкость становится мутноватой вследствие попадания в нее отделяемого сальных желез кожи плода, пушковых волосков, чешуек десквамированного эпите­лия, капелек жира и других веществ.  Амниотическая жидкость окружает плод и является биологически активной средой. По химическому составу околоплодные воды представ­ляют собой сложный коллоидный раствор.  В околоплодных водах в растворенном виде содержатся кислород и дву­окись углерода, имеются все электролиты, которые присутствуют в крови матери и плода. рН амниотической жидкости изменяется, коррелируя с рН крови плода.  Амниотическая жидкость содержит также белки, липиды, углеводы, гормоны, ферменты, биологически активные вещества (вазоактивные пеп­тиды, факторы роста, цитокины), витамины.  При физиологической доношенной беременности соотношение концен­траций лецитина и сфингомиелина в околоплодных водах равно 2:1. Такое соотношение этих химических агентов, которые относятся к фосфолипидам, характерно для плода, имеющего зрелые легкие, которые расправля­ются при первом внеутробном вдохе, обеспечивая тем самым становление легочного дыхания у новорожденного. Этот диагностический критерий имеет значение для дородового определения зрелости легких плода перед родоразрешением.  В околоплодные воды с мочой плода попадает вырабатываемый его печенью белок альфа-фетопротеин. Высокие концентрации этого белка в око­лоплодных водах могут свидетельствовать об аномалиях развития плода (дефекты нервной трубки, расщелины лица, пороки развития передней брюшной стенки).  Амниотическая жидкость обладает относительно высокими коагули­рующими свойствами из-за содержания факторов, влияющих на свертывающую систему крови (тромбопластин, фибринолизин, а также факторы X и XIII).  Обмен околоплодных вод имеет высокую скорость и совершается через амнион и хорион. Важная роль в обмене околоплодных вод принадлежит так называемому параплацентарному пути, т.е. через внеплацентарную часть плодных оболочек.  При доношенной беременности в течение 1 ч обменивается около 500 мл вод. Полный обмен околоплодных вод совершается в среднем за 3 ч. В про­цессе обмена 1/3 амниотической жидкости проходит через плод, который заглатывает воды в количестве приблизительно 20 мл/ч. В III триместре беременности в результате дыхательных движений плода через его легкие диффундирует жидкость со скоростью 600—800 мл/сут. В первой половине беременности, до ороговения эпидермиса плода, обмен амниотической жидкости осуществляется через его кожные покровы.  Околоплодные воды выполняют и важную механическую функцию, защищая организм плода от неблагоприятных внешних воздействий, создавая условия для свободных движений. Амниотическая жидкость предотвращает компрессию пуповины (сдавление между телом плода и стенками матки).  Во время родов околоплодные воды, располагающиеся ниже предле­жащей части плода (так называемый плодный пузырь), способствуют рас­крытию шейки матки и, тем самым, физиологическому течению первого периода родов.

Пуповина. На 15—17-е сутки внутриутробного развития возникает аллантоис - эпителиальный вырост, несущий фетальные сосуды, и проникает из основания желточного мешка в глубь амниотической ножки — будущей пуповины, которая соединяет зародыш с амнионом и хорионом. На ранних стадиях онтогенеза пуповина содержит две артерии и две вены. В дальней­шем обе вены сливаются в одну и, таким образом, пуповина состоит из двух артерий и одной вены. По вене пуповины течет артериальная кровь от плаценты к плоду, по артериям — венозная кровь от плода к плаценте. Со II триместра сосуды пуповины становятся извилистыми, поэтому пупочный канатик имеет спиралевидную форму.  Сосуды пуповины окружены студенистым веществом (вартонов сту­день), который обеспечивает упругость пупочного канатика. Он фиксирует сосуды пуповины, предохраняет их от сдавления и травмы, играет роль уаза Vа50^ит, обеспечивая питание сосудистой стенки, а также осуществляет обмен веществ между кровью плода и амниотической жидкостью. Вдоль сосудов пуповины располагаются нервные окончания, в связи с чем сдавле­ние пупочного канатика опасно с точки зрения как нарушения гемодина­мики плода, так и возникновения отрицательных нейрогенных реакций. Как правило, пуповина при­крепляется в центре плаценты или парацентрально.  Длина и толщина пуповины уве­личиваются в процессе внутриут­робного развития. При доношенной беременности длина пуповины в среднем составляет 50 см, толщи­на — 1 см. Пуповина вместе с плацентой и плодными оболочками называет­ся последом. Послед выделяется из матки после рождения ребенка.

Вопрос №8

Морфогенез – возникновение и развитие органов, частей тела организмов как в онтогенезе, так и в филогенезе. Изучение особенностей морфологии на разных этапах онтогенеза в целях управления развитием организмов составляет основную задачу биологии развития, а также генетики, молекулярной биологии,эволюционной физиологии и др. и связано с изучением закономерностей наследственности.

Экспрессия гена – степень выраженности гена при реализации в различных условиях среды. Синтез белка происходит избирательно. В построении белка, необходимого для данных условий среды, участвуют определенные аминокислоты. Информация о создании цепи находится в ДНК, а ДНК соответственно в генах.

Молекулярно-генетический уровень митоза – происходит реализация молекул ДНК с помощью хромосом, синтез белка, РНК и других высокомолекулярных соединений.

Клеточный уровень митоза – происходит равномерное распределение генетической информации, так как две дочерние клетки образуются из одного ядра.

Дифференцировка клеток и избирательная активность генов.

До стадии бластулы все клетки тотипотентны – стволовые. Со временем тотипотентность снижается и появляются полипотентные (способны превращаться только в определенную ткань).   У взрослых особей также сохраняется часть стволовых клеток. В ядрах дифференцированных клеток большинство генов находится в репрессивном состоянии, число же активно работающих генов различно в различных тканях и органах на разных стадиях развития. У эукариот существует путь регулирования генной активности – одновременное групповое подавление активности генов в целой хромосоме или ее большем участке. Это осуществляется белками-гистонами.

НАДКЛЕТОЧНАЯ СИСТЕМА [ supracellular system ]

     Надклеточные системы организма - системы, которые по уровню структурно-функциональной организации в иерархии систем организма находятся выше клетки.       Надклеточные системы включают в себя клетки, как элементарные структурно-функциональные единицыМатериальнойструктурой, из которой построены надклеточные системы, являются ткани.      Примеры надклеточных системСтруктурно-функциональные единицы (например, печёночная дольканефрондвигательная единица мышцы, функциональные единицы гладкой мышечной ткани), органы (например, мышцы, внутренние органы), системы органов и тканей (например, система дыханиясистема кровообращения).       Системы, которые по уровню структурно-функциональной организации в иерархии систем организма находятся ниже клетки, называют субклеточными системами. Все органеллы клетки являются субклеточными системами.

Детерминация — это процесс определения пути, направления, программы развития материала эмбриональных зачатков с образованием специализированных тканей. Детерминация может быть оотипической (программирующей развитие из яйцеклетки и зиготы организма в целом), зачатковой (программирующей развитие органов или систем, возникающих из эмбриональных зачатков), тканевой (программирующей развитие данной специализированной ткани) и клеточной (программирующей дифференцировку конкретных клеток). Различают детерминацию: 1) лабильную, неустойчивую, обратимую и 2) стабильную, устойчивую и необратимую. При детерминации тканевых клеток происходит стойкое закрепление их свойств, вследствие чего ткани теряют способность к взаимному превращению (метаплазии). Механизм детерминации связан со стойкими изменениями процессов репрессии (блокирования) и экспрессии (деблокирования) различных генов.

Клеточная гибель — широко распространенное явление как в эмбриогенезе, так и в эмбриональном гистогенезе. Как правило, в развитии зародыша и тканей гибель клеток протекает по типу апоптоза. Примерами программированной гибели являются гибель эпителиоцитов в межпальцевых промежутках, гибель клеток по краю срастающихся небных перегородок. Программированная гибель клеток хвоста происходит при метаморфозе личинки лягушки. Это примеры морфогенетической гибели. В эмбриональном гистогенезе также наблюдается гибель клеток, например при развитии нервной ткани, скелетной мышечной ткани и др. Это примеры гистогенетической гибели. В дефинитивном организме путем апоптоза погибают лимфоциты при их селекции в тимусе, клетки оболочек фолликулов яичников в процессе их отбора для овуляции и др.

Дифференцировка клеток — процесс реализации генетически обусловленной программы формирования специализированного фенотипа клеток, отражающего их способность к тем или иным профильным функциям. Иными словами, фенотип клеток есть результат координированной экспрессии (то есть согласованной функциональной активности) определённого набора генов.

В процессе дифференцировки менее специализированная клетка становится более специализированной. Например, эмбриональная стволовая клетка «превращается» в клетку эктодермы. Деление и дифференцировка — основные процессы, путем которых одиночная клетка (зигота) развивается в многоклеточный организм, содержащий самые разнообразные виды клеток. Дифференцировка меняет функцию клетки, ее размер, форму и метаболическую активность. Достигается это изменениями в экспрессии генов, в то время как ДНК остается неизменной. Один из способов регулирования экспрессии генов — метилирование ДНК. Дифференцировка также случается и во взрослом организме, когда поврежденные клетки тканей замещаются новыми, полученными путем деления и дальнейшей дифференцировки взрослых стволовых клеток. Запускать дифференцировку могут как внутренние причины так и внешние сигналы.

Пролиферация (от лат. proles — отпрыск, потомство и fero — несу) — разрастание ткани организма путём размножения клеток. Механизм пролиферации отличается от других механизмов изменения объёма клетки (клеток), например, отёка или апоптоза. Термин в медицине впервые ввел немецкий ученый Вирхов для обозначения новообразования клеток путем их размножения делением[1]. Регулировать интенсивность пролиферации можно стимуляторами и ингибиторами, которые могут вырабатываться и вдали от реагирующих клеток (например, гормонами), и внутри них. Непрерывно пролиферация происходит в раннем эмбриогенезе и по мере дифференцировки периоды между делениями удлиняются. Некоторые клетки, например нервные, не способны к пролиферации[

Миграции клеток, или клеточные перемещения, наряду с другими клеточными процессами имеют очень большое значение, начиная с процесса гаструляции и далее, в процессах морфогенеза. Клетки мезенхимного типа мигрируют одиночно и группами, а клетки эпителиев обычно согласованно, пластом. Мезенхима — это скопление веретеновидных или звездчатых клеток, погруженных в межклеточный матрикс. Эпителий — группы клеток, плотно прилежащих друг к другу боковыми стенками и имеющих апикальную и базальную поверхности. Как мезенхима, так и эпителии могут быть образованы из любого из трех зародышевых листков. Клетки мезенхимного типа наиболее подвижны, так как не образуют между собой стойких контактов.

Наиболее яркий пример миграции мезенхимных клеток связан с нервным гребнем. При смыкании нервной трубки клетки нервных валиков выходят из ее состава и располагаются между ее дорсальной частью и эктодермо

АДГЕЗИЯ клеток (от латинского adhaesio — прилипание), способность их слипаться друг с другом и с различными субстратами. Адгезией обусловливается, по-видимому, гликокаликсом и липопротеидами плазматических мембраны. Для большинства клеток характерна избирательная адгезия: после искусственной диссоциации клеток из разных организмов или тканей из суспензии собираются (агрегируют) в обособленные скопления преимущественно однотипные клетки. Адгезия нарушается при удалении из среды ионов Ca2+, обработке клеток специфическими ферментами (например, трипсином) и быстро восстанавливается после удаления диссоциирующего агента. С нарушением избирательности адгезии связана способность опухолевых клеток к метастазированию.

Апопто́з (греч. απόπτωσις — опадание листьев) — программируемая клеточная смерть, регулируемый процесс самоликвидации на клеточном уровне, в результате которого клетка фрагментируется на отдельные апоптотические тельца, ограниченные плазматической мембраной. Фрагменты погибшей клетки обычно очень быстро (в среднем за 90 минут[1]фагоцитируются макрофагами либо соседними клетками, минуя развитие воспалительной реакции. Морфологически регистрируемый процесс апоптоза продолжается 1—3 часа.[2] Одной из основных функций апоптоза является уничтожение дефектных (повреждённых, мутантных, инфицированных) клеток. В многоклеточных организмах апоптоз к тому же задействован в процессах дифференциации и морфогенеза, в поддержании клеточного гомеостаза, в обеспечении важных аспектов развития и функционированияиммунной системы. Апоптоз наблюдается у всех эукариот, начиная от одноклеточных простейших и вплоть до высших организмов. В программируемой смерти прокариотучаствуют функциональные аналоги эукариотических белков апоптоза.[3]

Исследования программируемой клеточной смерти ведутся с конца 1960-х годов. Термин «апоптоз» был впервые употреблён в 1972 году в работе британских учёных — Дж. Керра, Э. Уайли и А. Керри. Одними из первых к изучению генетики и молекулярных механизмов апоптоза приступили С. БреннерДж. Салстон и Р. Хорвиц, все трое в 2002 году были удостоены Нобелевской премии по физиологии или медицине за открытия в области генетической регуляции развития органов и за достижения в исследованиях программируемой клеточной смерти. В настоящее время установлены основные механизмы реализации апоптоза в эукариотических клетках, активно ведутся исследования регуляторов и активаторов апоптоза. Интерес учёных связан с возможностью применения знаний о программируемой клеточной смерти в медицине при лечениионкологическихаутоиммунных и нейродегенеративных заболеваний

Вопрос № 9

Как только в результате дробления образуются два первых бласто-мера, каждый из них становится неразрывной частью новойбиологической системы и его поведение определяется этой системой. Каждая стадия развития организма есть новое состояние целостности, интеграции. На любой стадии развития зародыш представляет собой интегрированное целое, а не сумму бластомеров и клеток. Интеграция развивающихся зародышей непрерывно меняется по мере развития. Основными механизмами интеграции являются межклеточные взаимодействия, а также гуморальная и нервная регуляция.

Различия в уровне интеграции, в характере взаимодействия клеток у разных видов животных могут быть очень существенными. Кроме того, иногда на более молодых стадиях развития зародыш более интегрирован, чем на более поздних. Так, личинки асцидий, вероятно, более интегрированы, чем взрослые формы. То же наблюдается, по-видимому, у многих моллюсков и червей. У позвоночных животных Интегрированность нарастает по мере углубления процессов органогенеза и цитодифференцировки.

ИНТЕГРАЦИЯ (латинское integratio — восстановление, восполнение, от integer — целый), целесообразное объединение и координация действий разных частей целостной системы. Применительно к живым организмам принцип интеграции был впервые сформулирован Г. Спенсером (1857). Интеграция живых систем осуществляется на разных уровнях их организации — молекулярном, клеточном, организменном, а также в различных биологических системах надорганизменного уровня — популяциях, видах, биоценозах и т. д., причём механизмы интеграции разных уровней специфичны. В биологических системах с жёсткими внутренними связями обычно имеются специальные компоненты, обеспечивающие интеграцию, например, во взрослом организме высших многоклеточных животных — нервная, сосудистая и эндокринная системы. Наиболее известная форма интеграции процессов онтогенеза—эмбриональная индукция. Интеграция популяций, видов, лишённых жёстких внутренних связей между составляющими их элементами (особями), обусловлена половым процессом и (у животных) наследственно закреплёнными особенностями поведения, определяющими взаимоотношения особей друг с другом. Интеграция экосистем осуществляется через посредство потоков органического вещества, энергии и информации. В целом степень интеграции — результат приспособительной эволюции, она отражает уровень развития регуляторных механизмов биологической системы и может рассматриваться как один из критериев морфофизиологического прогресса. Механизмы интеграции в применении к биологическим объектам в общей форме исследуются теорией систем и биокибернетикой.

Эмбриональная индукция — взаимодействие между частями развивающегося организма у многоклеточных беспозвоночных и всех хордовых

 существуют определенные клетки, которые действуют как организаторы на другие, подходящие для этого клетки. В условиях отсутствия клеток-организаторов такие клетки пойдут по другому пути развития, отличном от того, в котором они развивались бы в условиях присутствия организаторов. Проиллюстрировать это можно тем самым экспериментом 1924-го года, показавшим, что дифференцировка в значительной степени контролируется влиянием цитоплазмы клеток одного типа на клеткидругого типа.

Явление эмбриональной индукции тесно связано с такими понятиями, как морфоген и морфогенетическое поле. Еще Шпеманом было показано, что инактивированные нагреванием ткани организатора сохраняют индуцирующую активность и среда из-под изолированного организатора также индуцирует эктодерму.

Позже было показано, что многие ткани взрослых животных индуцируют нейрализацию эктодермы. также были открыты вещества-индукторы, такие как хордин и ноггин (действуют косвенно, через подавление BMP (англ. Bone Morphogenetic protein) — эпидермального индуктора, его инактивация хордином и ноггином вызывает нейрализацию эктодермы), и многие другие.

История эмбриологии сохранила сведения о многочисленных экспериментах по пересадке частей развивающихся зародышей. Среди них работы немецкого ученого Г. Шпемана и его последователей, которые установили, что если у зародыша на стадии гаструлы взять участок эктодермы , который должен развиться в нервную трубку, и пересадить его в зародыш на той же примерно стадии развития в эктодерму брюшной стороны другого зародыша, находящегося примерно на той же стадии развития, то в месте трансплантации начинает развиваться сначала нервная трубка, затем другие компоненты осевых органов. В результате в зародыше-хозяине возникает вторичный зародыш, который от первичного лишь незначительно отличается величиной. Г. Шпеман назвал это явление эмбриональной индукцией, во время которой трансплантат выступает в роли организатора, направляющего развитие окружающих клеток. В дальнейшем было обнаружено, что роль организатора могут играть не только определенные участки развивающихся зародышей, но и вещества самого различного происхождения. Ученые пришли к выводу, что эффект индукции на ранних этапах развития зародыша заключается в том, что клетки в месте трансплантации, поврежденные операцией, выходят из-под контроля сложившихся клеточных взаимоотношений и начинают развиваться в направлении целого организма.

Один из наиболее ранних в развитии и известных случаев эмбриональной индукции - до сих пор один из наиболее впечатляющих и, несмотря на поразительный прогресс молекулярной эмбриологии, до сих пор таинственный. Если удалить зрительный пузырек, то хрусталик не образуется; если зрительный пузырек имплантировать под эпидермис в какой-либо другой части тела, даже в туловище, в этом месте индуцируется хрусталик.

Первичная эмбриональная индукция

Преформизм (от лат. «заранее образую») — учение о наличии в половых клетках материальных структур, предопределяющих развитие зародыша и признаки развивающегося из него организма.

Преформизм возник на базе господствовавшего в XVII—XVIII вв. представления о преформации, согласно которому зародыш уже сформирован в половых клетках, и его дальнейшее развитие заключается только в увеличении в размерах.

Учёные того времени разделились на анималькулистов и овистов. Первые считали, что зародыш содержится в сперматозоидах, вторые — в яйцеклетках.

Преформистами были такие ученые, как Антони ЛевенгукМарчелло Мальпиги и др.

В борьбе с идеями преформизма большую роль сыграли учения Карла Максимовича Бэра, который установил, что в процессе онтогенеза сначала появляются самые общие признаки типа, к которому относится животное, затем последовательно развиваются признаки класса, отряда, семейства, рода, вида и, наконец, индивидуальные признаки особи.

ПИГЕНЕЗ

        (от греч. — после и — рождение, происхождение), учение о зародышевом развитии организмов как процессе, осуществляемом путём серии последоват. новообразований. Термин «Э.» предложен У. Гарвеем (1651), однако концепции Э. и противостоящего ему преформизма (учения о наличии в половых зачатках организмов материальных структур, предопределяющих развитие зародыша) в истолковании эмбрионального развития известны ещё с античности. Эпигенетич. концепции, как правило, признавали решающую роль внешних факторов. Совр. биология отказывается как от чисто эпигенетич., так и от чисто преформистских объяснений эмбриональных явлений. Вместе с тем термин «Э.» приобрёл более общее значение и употребляется применительно к концепциям, трактующим развитие как процесс последоват. возникновения новых форм и структур.

НЕОЭПИГЕНЕЗ

— учение об эпигенезе зачатка, предполагающее простое строение зародышевой клетки, никаких различных частей в ней не имеется. При развитии происходит усложнение, а существующие различил между отдельными частями умножаются и количественно.

Каждая клетка организма обладает индивидуальным морфогенетическим полем, которое несет в себе всю информацию обо всем организме и программы его развития. Поля отдельных клеток объединяются в единое морфогенетическое поле, которое обволакивает и пронизывает весь организм, находится в постоянной связи с каждой клеткой и управляет всеми операциями по формированию и функционированию как каждой клетки, так и всего организма в целом. По этой концепции носителем наследственной информации является уже не ядро клетки, а ее морфогенетическое поле, а ДНК только отражает информацию, которую несет поле. Морфогенетическое поле постоянно меняется, отражая динамику развития организма. Таким образом концепция морфогенетических полей строится на тезисе внеклеточной информации, причем, предполагается "объемный" характер этого поля, поскольку оно должно охватывать все клетки организма.

радиент физиологический

Г., отражающий изменение какого-либо физиологического показателя.

Вопрос 10

Эмбриогенез – развитие многоклеточного организма животного, состоящего из различных органов и тканей, от момента образования относительно просто организованной зиготы до его рождения или выхода из яйца. Он протекает в несколько этапов.

После оплодотворения в период дробления яйцо последовательно многократно делится сначала на крупные, затем на всё более и более мелкие клетки — бластомеры; далее образуется многоклеточный зародыш — бластула.

Во время стадии гаструлы происходит обособление зародышевых листков, располагающихся путём различных перемещении так, что внутри оказывается энтодерма, снаружи эктодерма, а между ними мезодерма.

Стадия нейрулы характеризуется образованием нервной пластины, которая образуется из эктодермы и свёртывается в нервную трубку — зачаток головного и спинного мозга;

Органогенез – стадия формирования органов у зародыша.

Переход от одного экрана к другому в анимации осуществляется при помощи кнопок, расположенных в правой нижней части модели. Кнопка с изображением проекционного киноаппарата позволяет переключаться из пошагового режима воспроизведения в непрерывный режим и обратно.

Пороки развития — аномалии развития, совокупность отклонений от нормального строения организма, возникающих в процессе внутриутробного или, реже, послеродового развития.

Их следует отличать от крайних вариантов нормы. Пороки развития возникают под действием разнообразных внутренних (наследственность,гормональные нарушения, биологическая неполноценность половых клеток и др.) и внешних (ионизирующее облучениевирусная инфекция, недостаток кислорода, воздействие некоторых химических веществ, амниотические перетяжки и т.д.) факторов. Со второй половины XX века отмечается значительное учащение пороков развития, особенно в развитых странах.

Причины 40-60% аномалий развития неизвестны. К ним применяют термин «спорадические дефекты рождения», термин обозначающий неизвестную причину, случайное возникновение и низкий риск повторного возникновения у будущих детей. Для 20-25% аномалий более вероятна «многофакторная» причина — комплексное взаимодействие многих небольших генетических дефектов и факторов риска окружающей среды. Остальные 10-13% аномалий связаны с воздействием среды. Только 12-25% аномалий имеют чисто генетические причины.

Тератогенные факторы

Основная статьяТератогенные факторы

Действие тератогенных факторов зависит от дозы. Для каждого фактора существует определенная пороговая доза тератогенного действия. Обычно она на 1 — 3 порядка ниже летальной. Различия тератогенного действия у различных биологических видов, а также у особей одного и того же вида связаны с особенностями всасыванияметаболизма, способности вещества распространяться в организме и проникать через плаценту.

Наиболее изучены следующие тератогенные факторы:

Алкоголь

Имеет значение алкоголизм родителей, прежде всего матери. Употребление матерью алкоголя во время беременности может привести к возникновению фетального алкогольного синдрома Инфекционные заболевания, передающиеся от матери плоду

В случаях, когда тератогенное действие оказывают возбудители инфекций, пороговую дозу и дозозависимый характер действия тератогенного фактора оценить не удается.

Ряд вирусных заболеваний перенесенных во время беременности (краснуха, эпидемический паротит, инклюзионная цитомегалия).

Ионизирующее излучение

Рентгеновские лучи, воздействие радиоактивных изотопов могут оказывать прямое действие на генетический аппарат. Кроме прямого действия, ионизирующее излучение обладает также токсическим эффектом и является причиной многих врожденных аномалий.

Лекарственные препараты

Следует отметить, что не существует лекарств, которые могут быть признаны полностью безопасными, особенно на ранних стадиях беременности.

Никотин

Курение большого количества сигарет во время беременности может привести к отставанию ребенка в физическом развитии.

Механизмы

Формирование пороков происходит преимущественно в период эмбрионального морфогенеза (3-10-я неделя беременности) в результате нарушения процессов размножения, миграции, дифференциации и гибели клеток. Эти процессы происходят на внутриклеточном, экстраклеточном, тканевом, межтканевом, органном и межорганном уровнях. Нарушением размножения клеток объясняют гипоплазию и аплазию органов. Нарушение их миграции лежит в основе гетеротопий. Задержка дифференциации клеток обусловливает незрелость или персистирование эмбриональных структур, а ее полная остановка - аплазию органа или его части. Нарушение физиологической гибели клеток, как и нарушение механизмов адгезии ("склеивание" и срастание эмбриональных структур), лежат в основе многих дизрафий (например, спинномозговых грыж).

Экспериментальной эмбриологией доказано, что в формировании пороков развития большое значение имеет т. н. тератогенетический терминационный период, то есть тот отрезок времени, в течение которого тератогенный агент может вызвать врождённый порок развития. Этот период для разных органов различен. Пользуясь данными эмбриологии, можно судить о сроках возникновения того или иного порока развития и составлять тератологические календари для пороков развития разных органов.

В основе формирования пороков развития могут лежать также остановка развития в критический период, нарушение процесса формирования, или дисонтогенез, и деструкция ткани. При этом может происходить недоразвитие органов либо их частей (гипогенезия) или избыточное их развитие (гипергенезия), отсутствие органов или части тела (агенезия), неправильное положение или перемещение органов, неправильное формирование той или иной ткани (дисплазия).

Различают двойные (множественные) пороки развития, в основе которых лежат неправильности развития двух и более плодов, и одиночные, связанные с нарушением формообразования одного организма. Двойные пороки развития, или уродства, — «неразделившиеся» близнецы, среди которых в зависимости от области их соединения различают торакопагов, ксифопагов, пигопагов и др. К одиночным порокам развития относятся акрания, врожденные расщелины верхней губы, расщелины мягкого и твёрдого нёбаполидактилияврождённые пороки сердца. Профилактика пороков развития — система антенатальной охраны плода.

Типы пороков развития

«Пороки развития» это широкая категория, которая включает различные условия: незначительные физические аномалии (например родимые пятна), серьёзные нарушения отдельных систем (например врожденные пороки сердца или пороки конечностей), и комбинации аномалий затрагивающих несколько частей тела. Врожденные дефекты метаболизма также считаются врожденными пороками.

Существуют три основных типа врожденных пороков:

Врожденные физические аномалии

Врожденные ошибки метаболизма

Другие генетические дефекты

Среди антенатальных факторов риска развития перинатальной патологии важное место занимают неблагоприятные воздействия внешней среды. Знание этих факторов в настоящее время приобретает особое значение в связи с необходимостью разрешения ак­туальных проблем экологии человека, проблем раз­вития «качества» будущего народонаселения.

Для эмбриона и плода внешней средой является не только среда, окружающая материнский организм, но и сам материнский организм.

В разные периоды развития эмбрион и плод обла­дают неодинаковой чувствительностью к действию таких факторов внешней среды, как гипоксия, пере­гревание или переохлаждение, ионизирующая ра­диация, химические агенты,, лекарственные препа­раты, патогенные микробы и их токсины, тяжелые заболевания матери, алкоголизм, курение и нарко­мания родителей.

В развитии плодного яйца выделяются два так называемых критических периода, когда эмбрион обладает наиболее высокой чувствительностью к   повреждающему   действию   патогенных   факторов.

Первым критическим периодом развития заро­дыша считается время, предшествующее импланта­ции и совпадающее с ней, вторым — стадия органо­генеза и плацентации.

Неблагоприятные факторы, действующие в стадии предымплантационного развития, чаще всего вызы­вают гибель эмбриона (эмбриолетальное действие) или не оказывают влияния на после­дующее развитие плода.

В период имплантации чувствительность оплодо­творенной яйцеклетки к действию повреждающих факторов возрастает, что обычно приводит к внутри­утробной гибели эмбриона.

Во втором критическом периоде развития — пе­риоде     органогенеза     и     плацентации — следствием действия неблагоприятных факторов внешней среды является частое возникновение уродств (те-; ратогенное дейстие) или, реже, гибель плода. . Воздействие повреждающих факторов внешней среды в фетальный период развития практически не вызывает тератогенного действия. Реакция плода в этот период определяется степенью зрелости тех органов и систем плода, на которые избирательно действует тот или иной фактор. У плода могут воз­никать ответные реакции, характерные для организма новорожденного