
- •Теоретическая механика
- •Основные понятия и аксиомы статики
- •1.1.1 Основные понятия
- •1.1.2 Аксиомы статики
- •1.3 Сложение сил на плоскости
- •1.3.1 Векторный (геометрический) способ сложения сил.
- •1.4.2 Теорема о трех непараллельных силах.
- •1.5 Вопросы для самоконтроля
- •2.1 Момент силы относительно центра (точки). Теорема Вариньона
- •2.1.1 Момент силы относительно центра.
- •2.1.2 Теорема Вариньона.
- •2.2 Теория пар сил, свойства пар сил
- •2.2.1 Основные понятия.
- •2.2.2 Свойства пар сил.
- •Приведение сил к заданному центру
- •2.3.1 Лемма Пуансо.
- •2.3.2 Теорема Пуансо.
- •2 .3.3 Частные случаи.
- •2.5 Вопросы для самоконтроля
- •3.1 Параллельные силы
- •Основная форма условий равновесия.
- •Вторая форма условий равновесия:
- •3.2 Распределенные нагрузки
- •3.3 Равновесие системы тел
- •3.4 Вопросы для самоконтроля
- •4.1 Момент силы относительно оси
- •4.2 Пространственная система сил
- •Уравнения равновесия произвольной пространственной системы сил в аналитической форме имеют вид:
- •Аналитические условия равновесия различных систем сил
- •4.4 Вопросы для самоконтроля
- •5.1 Трение
- •5.1.1 Трение скольжения
- •5.1.2 Трение качения
- •5.1.3 Трение верчения
- •5 .2 Центр тяжести твердого тела
- •5 .3 Статическая устойчивость
- •5.3.1 Устойчивость при опрокидывании
- •5.3.2 Устойчивость трактора на склоне
- •5.4 Вопросы для самоконтроля
- •Лекция №6
- •6.1 Основные понятия кинематики
- •6.2 Векторный способ задания движения точки
- •6.3 Координатный способ задания движения точки
- •Естественный способ задания движения точки
- •7.1 Поступательное движение твердого тела
- •7 .2 Вращательное движение твердого тела
- •7.3 Передаточные механизмы
- •7.4 Вопросы для самоконтроля
- •8.1 Плоское движение твердого тела
- •8.1.1 Свойства плоского движения:
- •8.1.2 Теорема сложения скоростей плоской фигуры:
- •8.1.4 Теорема о сложении ускорений плоской фигуры
- •8.2 Сложное движение точки (тела)
- •8.2.3 Сложение вращательных движений твердого тела
- •8.3 Вопросы для самоконтроля
- •Лекция №9
- •9.1 Законы динамики (Ньютона)
- •9.2 Системы единиц в механике
- •9.3 Дифференциальные уравнения движения материальной точки
- •9.3.1 Уравнения движения точки в декартовых координатах
- •9.3.2 Уравнение движения точки в естественных координатах
- •9.4 Вопросы для самоконтроля
- •10.1 Гармонические колебания точки под действием восстанавливающей силы
- •Свойства свободных гармонических колебаний:
- •А мплитуда а и начальная фаза α зависят от начальных условий;
- •Затухающие колебания точки при линейном законе сопротивления среды
- •10.3 Вопросы для самоконтроля
- •11.1 Вынужденные колебания точки в отсутствие сопротивления среды
- •11.2 Вынужденные колебания точки при вязком сопротивлении среды
- •11.3 Вопросы для самоконтроля
- •12.1 Относительное движение точки
- •12.1.1 Принципы относительности
- •Обозначим: - переносная сила инерции;
- •12.1.3 Сила тяготения, сила тяжести, вес.
- •12.2 Механическая система
- •12.2.2 Масса системы. Центр масс
- •12.2.6 Главные оси инерции
- •12.3 Вопросы для самоконтроля
- •13.1 Работа силы
- •13.1.6 Графический способ вычисления работы силы
- •1 3.1.7 Теоремы о работе силы:
- •13.1.8 Работа сил приложенных к вращающемуся телу
- •13.2 Мощность. Коэффициент полезного действия
- •13.3 Кинетическая энергия
- •Неизменяемая система
- •Система с идеальными связями
- •13.4 Вопросы для самоконтроля
- •14.1 Количество движения точки и системы. Импульс силы
- •14.2 Момент количества движения (кинетический момент)
- •14.3 Уравнение вращательного движения твердого тела
- •14.4 Уравнения плоского движения твердого тела
- •14.5 Вопросы для самоконтроля
- •15.1 Принцип Даламбера
- •15.2 Реакции, действующие на ось вращающегося тела
- •15.3 Вопросы для самоконтроля
- •16.1 Классификация связей
- •16.2 Возможные перемещения системы
- •16.3 Обобщенные координаты. Число степеней свободы системы
- •16.4 Принцип возможных перемещений
- •16.4.2 Примеры простейших механизмов:
- •16.5 Общее уравнение динамики
- •16.6 Вопросы для самоконтроля
- •17.1 Обобщенные скорости
- •17.2 Обобщенные силы
- •17.3 Уравнения Лагранжа (второго рода)
- •17.4 Вопросы для самоконтроля
- •18.1 Теория удара. Основные понятия и теоремы
- •18.1.1 Основные понятия.
- •18.2 Удар точки о неподвижную поверхность
- •1 8.2.1 Прямой удар.
- •18.2.2 Косой удар
- •18.2.3 Экспериментальное определение коэффициента восстановления.
- •18.2.4 Теоремы Карно.
- •18.3 Центральный удар двух тел
- •18.3.1 Прямой центральный удар.
- •18.4 Удар по телу, имеющему ось вращения. Центр удара
- •18.5 Вопросы для самоконтроля
8.1.4 Теорема о сложении ускорений плоской фигуры
Теорема: Ускорение любой точки М плоской фигуры геометрически складывается из ускорения какой-либо другой точки плоской фигуры (А) принятой за полюс и ускорения, которое получает эта точка (М) при вращении фигуры вокруг полюса (А).
.
Так как ускорение вращения точки может быть представлено как сумма касательного и нормального ускорений, то имеем:
.
В
ектор
направлен
всегда от точки М
к полюсу А;
вектор
и направлен в сторону «указанную»
угловым ускорением ε.
Векторное уравнение может быть решено аналитически, для чего его необходимо спроецировать на координатные оси, или графически с помощью построения плана ускорений.
Планом ускорений называется векторная диаграмма, построенная на основе теоремы сложения ускорений. Покажем порядок построения плана ускорений для кривошипно-ползунного механизма.
Пусть
заданы: положение механизма, длины
звеньев
и
. Так как точка А
механизма вращается по окружности
радиуса
,
то
;
.
Сложим
эти вектора, предварительно выбрав
масштабный коэффициент,
и определив их «чертежные» длины. Конец
суммарного вектора
обозначим буквой a.
Так как шатун АВ
совершает плоское движение, применим
к нему теорему сложения ускорений,
приняв за полюс точку А,
ускорение которой уже известно:
.
Рассчитаем
модуль и «чертежную» длину вектора
:
,
где
должно
быть определено ранее аналитически или
графически. Отложим этот вектор от точки
плана а//АВ
(направление на шатуне АВ
- от В
к полюсу А),
конец вектора обозначим
.
Из точки
проведем
пунктирную прямую
до пересечения с прямой проведенной из
полюса плана ускорений π
//OB.
Пересечение этих прямых обозначим b.
;
.
Чтобы определить на плане положение точки с, соединим точки а и b отрезком прямой и построим сходственно расположенный Δabc~ΔABC на шатуне АВ (правило подобия). Направим стрелку от полюса плана π к точке с .
.
8.2 Сложное движение точки (тела)
8
.2.1
В ряде случаев целесообразно рассматривать
движение точки или тела одновременно
по отношению к двум системам отсчета.
Рассмотрим неподвижную систему координат OX1 Y1 Z1 и систему OXYZ, которая движется относительно неподвижной системы. Движение точки М по отношению к неподвижной системе координат называется абсолютным или сложным движением.
Движение точки М по отношению к подвижной системе координат называется относительным движением. Движение подвижной системы координат относительно неподвижной называется переносным.
Теорема
о сложении скоростей:
При сложном движении абсолютная скорость
точки (тела)
равна геометрической сумме относительной
и переносной
скоростей:
;
;
8.2.2
Теорема о сложении ускорений:
При сложном движении ускорение точки
(тела) равно геометрической сумме трех
ускорений: относительного
,
переносного
и
Кориолиса
(поворотного):
;
;
,
где
-
вектор угловой скорости переносного
движения.
Н
аправление
ускорения Кориолиса
определяют по правилу
Жуковского:
Вектор относительной скорости
проецируется
на плоскость перпендикулярную оси
переносного вращения
,
затем вектор проекции
поворачивается
на 900
в сторону этого вращения.
При плоском движении достаточно вектор относительной скорости повернуть на 90° в направлении переносного вращения ωe.
Ускорение Кориолиса равно нулю, если:
переносное движение поступательное (wе=0);
отсутствует относительное движение (vr=0);
векторы и параллельны.