Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Эконометрика-методичка для заочников.doc
Скачиваний:
157
Добавлен:
18.11.2019
Размер:
5.91 Mб
Скачать

9.1. Спектральная плотность

Спектральная плотность p(w). Спектральную плотность стационарного временного ряда определяется через его автокорреляционную функцию соотношением

где . Так как r(t) = r(-t), спектральная плотность может быть записана в виде

Следовательно, функция p(w) является гармонической с периодом 2p. График спектральной плотности, называемый спектром, симметричен относительно w = p. Поэтому при анализе поведения p(w) ограничиваются значениями 0 £ w £ p. Спектральная плотность принимает только неотрицательные значения.

Использование свойств этой функции в прикладном анализе временных рядов определяется как «спектральный анализ временных рядов». Применительно к статистическому анализу экономических рядов динамики этот подход не получил широкого распространения, т.к. эмпирический анализ спектральной плотности требует в качестве своей информационной базы либо достаточно длинных стационарных временных рядов, либо нескольких траекторий анализируемого временного ряда (и та и другая ситуация весьма редки в практике статистического анализа экономических рядов динамики).

Для содержательного анализа важно, что величина спектральной плотности характеризует силу взаимосвязи, существующей между временным рядом xt и гармоникой с периодом 2p/w. Это позволяет использовать спектр как средство улавливания периодичностей в анализируемом временном ряду: совокупность пиков спектра определяет набор гармонических компонентов в разложении (1.1.1). Если в ряде содержится скрытая гармоника частоты w, то в нем присутствуют также периодические члены с частотами w/2, w/3 и т.д. Это так называемое «эхо», повторяемое спектром на низких частотах. Можно несколько расширить класс моделей стационарных временных рядов, используемых при анализе конкретных рядов экономической динамики.

Ряд называется слабо стационарным (или стационарным в широком смысле), если его среднее значение, дисперсия и ковариации не зависят от t.

Неслучайная составляющая временного ряда и методы его сглаживания

Существенную роль в решении задач выявления и оценивания трендовой, сезонной и циклической составляющих в разложении играет начальный этап анализа, на котором:

  1. выявляется сам факт наличия/отсутствия неслучайной (и зависящей от времени t) составляющей в разложении; по существу, речь идет о статистической проверке гипотезы

H0: Ext = m = const

  1. (включая утверждение о взаимной статистической независимости членов исследуемого временного ряда) при различных вариантах конкретизации альтернативных гипотез типа

HA: Ext ¹ const;

  1. строится оценка (аппроксимация) для неизвестной интегральной неслучайной составляющей f(t) = c1 fтр(t) + c2j(t) +c3y(t), т.е. решается задача сглаживания (элиминирования случайных остатков et) анализируемого временного ряда xt.

9.2. Спектральный (Фурье) анализ

Спектральный (Фурье) анализ и кросс-спектральный анализ. Модуль Временные ряды включает полную реализацию методов спектрального или Фурье анализа одного ряда и кросс-спектральный анализ двух рядов. Преимущества реализации спектрального анализа особенно отчетливо проявляются при анализе очень длинных временных рядов (с более чем 250 тыс. наблюдений) и не предполагают каких-либо ограничений на длину ряда (в частности, длина исходного ряда не обязательно должна быть четной). Вместе с тем, иногда бывает разумно предварительно увеличить или уменьшить длину ряда. Стандартные методы предварительной обработки ряда включают косинус-сглаживание, вычитание среднего и удаление тренда. Результаты обычного спектрального анализа содержат коэффициенты частоты, периода, коэффициенты при синусах и косинусах, периодограмма и оценка спектральной плотности. Оценка плотности может быть вычислена с помощью весов Даниеля, Хэмминга, Бартлетта, Тьюки, Парзена или с весами и шириной, заданными пользователем. Очень полезно, особенно при работе с длинными рядами, иметь возможность выводить в убывающем порядке заранее заданное число точек периодограммы или спектральной плотности; таким образом можно легко обнаружить резкие пики периодограммы и спектральной плотности для длинных рядов. Имеется возможность вычислить d-критерий Колмогорова-Смирнова для значений периодограммы, чтобы проверить, подчиняются ли они экспоненциальному распределению (является ряд белым шумом или нет). Для представления результатов анализа имеются различные типы графиков; можно отобразить коэффициенты при синусах и косинусах, периодограмму, лог– периодограмму, спектральную и лог-спектральную плотность по отношению к частотам, периодам и лог– периодам. В случае длинного исходного ряда имеется возможность выбрать конкретный сегмент (период), для которого будут изображаться соответствующие периодограмма и график спектральной плотности, тем самым будет улучшено их "разрешение". При кросс-спектральном анализе, в дополнение к результатам обычного спектрального анализа каждого отдельного ряда, вычисляется кросс-периодограмма (вещественная и мнимая часть), ко-спектральная плотность, квадратурный спектр, кросс-амплитуда, значения когерентности, усиления и фазовый спектр. Все эти величины могут быть выведены на график, где по горизонтальной оси будет откладываться частота, период или лог-период либо для всего интервала периодов (соответственно, частот), либо для выбранного пользователем диапазона. Указанное пользователем количество наибольших значений кросс-периодограммы (вещественных или мнимых) может быть выведено в убывающем порядке в виде таблицы результатов, что позволяет легко выявлять на ней резкие пики для длинных исходных рядов.