- •1.2. Типы моделей
- •1.3. Типы данных
- •1.4. История
- •1.5. Тестовые задания для самостоятельной работы
- •Ответы к тесту:
- •2. Парная регрессия и корреляция. Свойства коэффициентов регрессии и проверка гипотез
- •2.1. Задачи корреляционно-регрессивного анализа
- •Содержательный характер задач корреляционно-регрессивного метода
- •2.2. Вычисление и интерпретация параметров парной линейной корреляции
- •2.3. Статистическая оценка надёжности параметров парной корреляции
- •2.4. Применение парного линейного уравнения регрессии
- •Коэффициент корреляции рангов
- •2.5. Тестовые задания для самостоятельной работы
- •Ответы к тесту:
- •3. Множественная регрессия
- •3.1. Формулы для коэффициентов и стандартных ошибок
- •3.2. Множественная регрессия и оценка параметров Кобба-Дугласа
- •3.3. Мультиколлинеарность
- •3.4. Тестовые задания для самостоятельной работы
- •Ответы к тесту:
- •4. Выбор уравнения
- •4.1. Влияние отсутствия необходимой переменной
- •4.2. Лишняя переменная
- •4.3. Замещающие переменные
- •4.4. Лаговые переменные
- •4.5. Тестовые задания для самостоятельной работы
- •Ответы к тесту:
- •5. Фиктивные переменные
- •5.1. Фиктивные и нефиктивные переменные в регрессии
- •5.2. Тестовые задания для самостоятельной работы
- •Ответы к тесту:
- •6. Гетероскедастичность
- •6.1. Коэффициент ранговой корреляции Спирмена (кркс)
- •6.2. Тест Голдфелда-Куандта
- •6.3. Тест Глейзера
- •6.4. Тестовые задания для самостоятельной работы
- •Ответы к тесту:
- •7. Автокорреляция
- •7.1. Поправка Прайса–Уинстена
- •7.2. Процедура Кохрана–Оркатта
- •7.3. Тестовые задания для самостоятельной работы
- •Ответы к тесту:
- •8. Модели временных рядов
- •8.1. Модели рядов, содержащих сезонную компоненту
- •Ответы к тесту:
- •9. Автоковариационная и автокорреляционная функции, их свойства. Коррелограмма
- •9.1. Спектральная плотность
- •9.2. Спектральный (Фурье) анализ
- •9.3. Тестовые задания для самостоятельной работы
- •Ответы к тесту:
- •10. Неслучайная составляющая временного ряда
- •10.1. Проверка гипотезы о неизменности среднего значения временного ряда
- •10.2. Метод экспоненциально взвешенного скользящего среднего (метод Брауна [Brown (1963)])
- •10.3. Тестовые задания для самостоятельной работы
- •Ответы к тесту:
- •11. Стационарные временные ряды и их идентификация
- •11.1. Основные понятия
- •11.2 Модели скользящего среднего сс(1) и сс(2). Двойственность. Обратимость. Идентификация
- •11.3. Тестовые задания для самостоятельной работы
- •Ответы к тесту:
- •12. Лаговые переменные. Нестационарные временные ряды и их идентификация
- •12.1. Модель авторегрессии-проинтегрированного скользящего среднего (arima(p, k, q)-модель)
- •12.2. Модели рядов, содержащих сезонную компоненту
- •12.3. Полиномиальная лаговая структура Ширли Алмон
- •12.4. Геометрическая лаговая структура Койка
- •12.5. Модель частичного приспособления
- •12.6. Тестовые задания для самостоятельной работы
- •Ответы к тесту:
- •13. Предсказания
- •13.1 Основные понятия
- •13.2. Доверительные интервалы и интервалы предсказания
- •13.3. Критерий г. Чоу
- •13.4. Коэффициент Тейла
- •13.5. Тестовые задания для самостоятельной работы
- •Ответы к тесту:
- •14. Модели в виде систем линейных одновременных уравнений и их идентификация
- •14.1. Основные понятия
- •14.2. Тестовые задания для самостоятельной работы
- •Ответы к тесту:
- •14.3. Использование эконометрической модели при исследовании зависимости затрат от объёма производства и структуры продукции на примере конкретного предприятия
- •Расчетное задание 1 «Построение уравнений парной регрессии и оценка их значимости»
- •Варианты лабораторных задач Задание
- •Расчетное задание 2. «Построение уравнений линейной множественной регрессии и оценка его значимости» Задача
- •Варианты лабораторных задач
- •Глоссарий
- •Библиографисеский список
- •Оглавление
- •1.1.Модели 3
- •10.1. Проверка гипотезы о неизменности среднего значения временного ряда 88
- •Эконометрика Учебное пособие
9.1. Спектральная плотность
Спектральная плотность p(w). Спектральную плотность стационарного временного ряда определяется через его автокорреляционную функцию соотношением
где
.
Так как r(t)
= r(-t),
спектральная плотность может быть
записана в виде
Следовательно, функция p(w) является гармонической с периодом 2p. График спектральной плотности, называемый спектром, симметричен относительно w = p. Поэтому при анализе поведения p(w) ограничиваются значениями 0 £ w £ p. Спектральная плотность принимает только неотрицательные значения.
Использование свойств этой функции в прикладном анализе временных рядов определяется как «спектральный анализ временных рядов». Применительно к статистическому анализу экономических рядов динамики этот подход не получил широкого распространения, т.к. эмпирический анализ спектральной плотности требует в качестве своей информационной базы либо достаточно длинных стационарных временных рядов, либо нескольких траекторий анализируемого временного ряда (и та и другая ситуация весьма редки в практике статистического анализа экономических рядов динамики).
Для содержательного анализа важно, что величина спектральной плотности характеризует силу взаимосвязи, существующей между временным рядом xt и гармоникой с периодом 2p/w. Это позволяет использовать спектр как средство улавливания периодичностей в анализируемом временном ряду: совокупность пиков спектра определяет набор гармонических компонентов в разложении (1.1.1). Если в ряде содержится скрытая гармоника частоты w, то в нем присутствуют также периодические члены с частотами w/2, w/3 и т.д. Это так называемое «эхо», повторяемое спектром на низких частотах. Можно несколько расширить класс моделей стационарных временных рядов, используемых при анализе конкретных рядов экономической динамики.
Ряд называется слабо стационарным (или стационарным в широком смысле), если его среднее значение, дисперсия и ковариации не зависят от t.
Неслучайная составляющая временного ряда и методы его сглаживания
Существенную роль в решении задач выявления и оценивания трендовой, сезонной и циклической составляющих в разложении играет начальный этап анализа, на котором:
выявляется сам факт наличия/отсутствия неслучайной (и зависящей от времени t) составляющей в разложении; по существу, речь идет о статистической проверке гипотезы
H0: Ext = m = const
(включая утверждение о взаимной статистической независимости членов исследуемого временного ряда) при различных вариантах конкретизации альтернативных гипотез типа
HA: Ext ¹ const;
строится оценка (аппроксимация) для неизвестной интегральной неслучайной составляющей f(t) = c1 fтр(t) + c2j(t) +c3y(t), т.е. решается задача сглаживания (элиминирования случайных остатков et) анализируемого временного ряда xt.
9.2. Спектральный (Фурье) анализ
Спектральный (Фурье) анализ и кросс-спектральный анализ. Модуль Временные ряды включает полную реализацию методов спектрального или Фурье анализа одного ряда и кросс-спектральный анализ двух рядов. Преимущества реализации спектрального анализа особенно отчетливо проявляются при анализе очень длинных временных рядов (с более чем 250 тыс. наблюдений) и не предполагают каких-либо ограничений на длину ряда (в частности, длина исходного ряда не обязательно должна быть четной). Вместе с тем, иногда бывает разумно предварительно увеличить или уменьшить длину ряда. Стандартные методы предварительной обработки ряда включают косинус-сглаживание, вычитание среднего и удаление тренда. Результаты обычного спектрального анализа содержат коэффициенты частоты, периода, коэффициенты при синусах и косинусах, периодограмма и оценка спектральной плотности. Оценка плотности может быть вычислена с помощью весов Даниеля, Хэмминга, Бартлетта, Тьюки, Парзена или с весами и шириной, заданными пользователем. Очень полезно, особенно при работе с длинными рядами, иметь возможность выводить в убывающем порядке заранее заданное число точек периодограммы или спектральной плотности; таким образом можно легко обнаружить резкие пики периодограммы и спектральной плотности для длинных рядов. Имеется возможность вычислить d-критерий Колмогорова-Смирнова для значений периодограммы, чтобы проверить, подчиняются ли они экспоненциальному распределению (является ряд белым шумом или нет). Для представления результатов анализа имеются различные типы графиков; можно отобразить коэффициенты при синусах и косинусах, периодограмму, лог– периодограмму, спектральную и лог-спектральную плотность по отношению к частотам, периодам и лог– периодам. В случае длинного исходного ряда имеется возможность выбрать конкретный сегмент (период), для которого будут изображаться соответствующие периодограмма и график спектральной плотности, тем самым будет улучшено их "разрешение". При кросс-спектральном анализе, в дополнение к результатам обычного спектрального анализа каждого отдельного ряда, вычисляется кросс-периодограмма (вещественная и мнимая часть), ко-спектральная плотность, квадратурный спектр, кросс-амплитуда, значения когерентности, усиления и фазовый спектр. Все эти величины могут быть выведены на график, где по горизонтальной оси будет откладываться частота, период или лог-период либо для всего интервала периодов (соответственно, частот), либо для выбранного пользователем диапазона. Указанное пользователем количество наибольших значений кросс-периодограммы (вещественных или мнимых) может быть выведено в убывающем порядке в виде таблицы результатов, что позволяет легко выявлять на ней резкие пики для длинных исходных рядов.
