- •1.2. Типы моделей
- •1.3. Типы данных
- •1.4. История
- •1.5. Тестовые задания для самостоятельной работы
- •Ответы к тесту:
- •2. Парная регрессия и корреляция. Свойства коэффициентов регрессии и проверка гипотез
- •2.1. Задачи корреляционно-регрессивного анализа
- •Содержательный характер задач корреляционно-регрессивного метода
- •2.2. Вычисление и интерпретация параметров парной линейной корреляции
- •2.3. Статистическая оценка надёжности параметров парной корреляции
- •2.4. Применение парного линейного уравнения регрессии
- •Коэффициент корреляции рангов
- •2.5. Тестовые задания для самостоятельной работы
- •Ответы к тесту:
- •3. Множественная регрессия
- •3.1. Формулы для коэффициентов и стандартных ошибок
- •3.2. Множественная регрессия и оценка параметров Кобба-Дугласа
- •3.3. Мультиколлинеарность
- •3.4. Тестовые задания для самостоятельной работы
- •Ответы к тесту:
- •4. Выбор уравнения
- •4.1. Влияние отсутствия необходимой переменной
- •4.2. Лишняя переменная
- •4.3. Замещающие переменные
- •4.4. Лаговые переменные
- •4.5. Тестовые задания для самостоятельной работы
- •Ответы к тесту:
- •5. Фиктивные переменные
- •5.1. Фиктивные и нефиктивные переменные в регрессии
- •5.2. Тестовые задания для самостоятельной работы
- •Ответы к тесту:
- •6. Гетероскедастичность
- •6.1. Коэффициент ранговой корреляции Спирмена (кркс)
- •6.2. Тест Голдфелда-Куандта
- •6.3. Тест Глейзера
- •6.4. Тестовые задания для самостоятельной работы
- •Ответы к тесту:
- •7. Автокорреляция
- •7.1. Поправка Прайса–Уинстена
- •7.2. Процедура Кохрана–Оркатта
- •7.3. Тестовые задания для самостоятельной работы
- •Ответы к тесту:
- •8. Модели временных рядов
- •8.1. Модели рядов, содержащих сезонную компоненту
- •Ответы к тесту:
- •9. Автоковариационная и автокорреляционная функции, их свойства. Коррелограмма
- •9.1. Спектральная плотность
- •9.2. Спектральный (Фурье) анализ
- •9.3. Тестовые задания для самостоятельной работы
- •Ответы к тесту:
- •10. Неслучайная составляющая временного ряда
- •10.1. Проверка гипотезы о неизменности среднего значения временного ряда
- •10.2. Метод экспоненциально взвешенного скользящего среднего (метод Брауна [Brown (1963)])
- •10.3. Тестовые задания для самостоятельной работы
- •Ответы к тесту:
- •11. Стационарные временные ряды и их идентификация
- •11.1. Основные понятия
- •11.2 Модели скользящего среднего сс(1) и сс(2). Двойственность. Обратимость. Идентификация
- •11.3. Тестовые задания для самостоятельной работы
- •Ответы к тесту:
- •12. Лаговые переменные. Нестационарные временные ряды и их идентификация
- •12.1. Модель авторегрессии-проинтегрированного скользящего среднего (arima(p, k, q)-модель)
- •12.2. Модели рядов, содержащих сезонную компоненту
- •12.3. Полиномиальная лаговая структура Ширли Алмон
- •12.4. Геометрическая лаговая структура Койка
- •12.5. Модель частичного приспособления
- •12.6. Тестовые задания для самостоятельной работы
- •Ответы к тесту:
- •13. Предсказания
- •13.1 Основные понятия
- •13.2. Доверительные интервалы и интервалы предсказания
- •13.3. Критерий г. Чоу
- •13.4. Коэффициент Тейла
- •13.5. Тестовые задания для самостоятельной работы
- •Ответы к тесту:
- •14. Модели в виде систем линейных одновременных уравнений и их идентификация
- •14.1. Основные понятия
- •14.2. Тестовые задания для самостоятельной работы
- •Ответы к тесту:
- •14.3. Использование эконометрической модели при исследовании зависимости затрат от объёма производства и структуры продукции на примере конкретного предприятия
- •Расчетное задание 1 «Построение уравнений парной регрессии и оценка их значимости»
- •Варианты лабораторных задач Задание
- •Расчетное задание 2. «Построение уравнений линейной множественной регрессии и оценка его значимости» Задача
- •Варианты лабораторных задач
- •Глоссарий
- •Библиографисеский список
- •Оглавление
- •1.1.Модели 3
- •10.1. Проверка гипотезы о неизменности среднего значения временного ряда 88
- •Эконометрика Учебное пособие
3.2. Множественная регрессия и оценка параметров Кобба-Дугласа
Возникновение теории производственных функций принято относить к 1927 г., когда появилась статья американских ученых экономиста П. Дугласа (P. Douglas) и математика Д. Кобба (D. Cobb) «Теория производства». В этой статье, была предпринята попытка, эмпирическим путем определить влияние затрачиваемого капитала и труда на объем выпускаемой продукции в обрабатывающей промышленности США.
Как уже было сказано, производственная функция отражает функциональную связь между объёмом эффективно используемых факторов производства (трудом и имущественным капиталом) и с их помощью достигаемым выпуском при существующем техническом и организационном знании. При субституционной производственной функции производство может быть увеличено за счёт повышения количественной характеристики одного из факторов, в то время как количественная характеристика другого фактора остаётся без изменения, в другом варианте же производство остаётся без изменения при различных количественных комбинациях факторов труда и имущественного капитала.
Субстиционная производственная функция имеет в общем следующее выражение:
,
где K – число производственного капитала;
L – число производственных трудовых часов или, другими словами, число производственных единиц гуманного капитала.
На основе условно введённой субстиционности факторов производства можно сделать следующие два вывода относительно функциональной взаимосвязи данных факторов:
При прочих равных увеличение одного из факторов производства ведёт к увеличению выпуска – первая производная положительна.
Однако предельная производительность возрастающего фактора уменьшается с увеличением величины данного фактора – вторая производная отрицательна.
Уровень организационных и технических знаний отображается в соответствующих формах взаимодействий факторов. В рассматриваемом случае уровень знаний постоянен, т.е. в данных рамках предполагается отсутствие технического прогресса. Таким образом, субстиционная функция производства может быть представлена в виде следующего изображения, отражающего взаимосвязь между количеством труда и выпуском при заданном количестве имущественного капитала (рис.3.1):
Рис.3.1. Связь между производством и производственным трудом
Каждое увеличение количественного параметра имущественного капитала означает смещение кривой вверх и одновременного увеличения предельной производительности труда при заданном количестве рабочей силы, т.е. на основе вытекающего непосредственно из описанного вывода означает и более высокую величину выпуска при увеличении производственного фактора «труд»: кривая OK1 на рисунке показывает более крутой наклон по сравнению с кривой OK0 при любом числе занятых трудом.
С увеличением количественного параметра имущественного капитала увеличивается и средняя производительности труда, которая является частным от деления величины выпуска на величину затраченного труда. Однако при этом уменьшается коэффициент труда, определяющий среднее количество затраченного труда на каждую единицу выпуска и являющийся таким образом обратной величиной средней производительности труда.
Величина имущественного капитала принимается в рамках данного кратковременного анализа как экзогенно заданная, поэтому в модели и описании не учитывается технический прогресс, а также эффект увеличения производственных мощностей за счёт инвестиций.
В 1927 г. Пол Дуглас обнаружил, что если совместить графики зависимости от времени логарифмов показателей реального объема выпуска (y), капитальных затрат (К) и затрат труда (L), то расстояния от точек графика показателей выпуска до точек графиков показателей затрат труда и капитала будут составлять постоянную пропорцию. Затем он обратился к Чарльзу Коббу с просьбой найти математическую зависимость, обладающую такой особенностью, и Кобб предложил следующую субституционную функцию:
Эта функция была предложена примерно 30 годами раньше Филипом Уикстидом (Wicksteed), но они были первыми, кто использовал для ее построения эмпирические данные.
Однако при больших значениях K и L эта функция не имеет экономического смысла, т.к. выпуск все время возрастает при возрастании затрат.
Кинетическая
функция
(где g – норма технического прогресса
за единицу времени) получена умножением
функции Кобба-Дугласа на eg,
что снимает данную проблему и делает
функцию Кобба-Дугласа экономически
интересной. Эластичность выпуска
продукции по капиталу и труду равна
соответственно a и b, так как
и аналогичным образом легко показать, что (dy/dL)/(y/L) равно b.
Следовательно, увеличение затрат капитала на 1% приведет к росту выпуска продукции на a процентов, а увеличение затрат труда на 1% приведет к росту выпуска на b процентов. Можно предположить, что обе величины a и b находятся между нулем и единицей. Они должны быть положительными, так как увеличение затрат производственных факторов должно вызывать рост выпуска. В то же время, вероятно, они будут меньше единицы, так как разумно предположить, что уменьшение эффекта от масштаба производства приводит к более медленному росту выпуска продукции, чем затрат производственных факторов, если другие факторы остаются постоянными. Если a и b в сумме превышают единицу, то говорят, что функция имеет возрастающий эффект от масштаба производства (это означает, что если К и L увеличиваются в некоторой пропорции, то y растет в большей пропорции).
Если их сумма равна единице, то это говорит о постоянном эффекте от масштаба производства (y увеличивается в той же пропорции, что и К и L). Если их сумма меньше, чем единица, то имеет место убывающий эффект от масштаба производства (y увеличивается в меньшей пропорции, чем К и L).
В соответствии с допущением о конкурентности рынков факторов производства и b имеют дальнейшую интерпретацию как прогнозируемые доли дохода, полученного соответственно за счет капитала и труда. Если рынок труда имеет конкурентный характер, то ставка заработной платы (w) будет равна предельному продукту труда (dy/dL):
Следовательно, общая сумма заработной платы (wL) будет равна by, а доля труда в общем выпуске продукции (wL/Y) составит постоянную величину b. Аналогичным образом норма прибыли выражается через dy/dK:
и, следовательно, общая прибыль (rК) будет равна ay, а доля прибыли будет постоянной величиной a. Существует ряд проблем по применению такой функции, особенно в тех случаях, когда она используется для экономики в целом. В частности, даже в тех случаях, когда между выпуском продукции, производственным оборудованием и трудом в производственном процессе существует технологическая зависимость, то совершенно необязательно, что подобная зависимость существует тогда, когда указанные факторы комбинируются в масштабах экономики в целом. Во-вторых, даже если такая зависимость для экономики в целом существует, то нет никаких оснований считать, что она будет иметь простую форму.
При построении производственной функции Кобба-Дугласа параметры A, a, b можно оценить с помощью линейного регрессионного анализа по методу наименьших квадратов (МНК):
1) Производственную функцию Кобба-Дугласа приводят к линейному виду путем логарифмирования
2)
При применении МНК цель заключается в
минимизации суммы квадратичных отклонений
(SSD) между наблюдаемыми величинами
ln(yi),
(i=1.N; N – количество наблюдений) и
соответствующими оценками
3) Введем векторы
;
и
матрицу
Тогда критерий можно записать в виде
.
Дифференцируя SSD по вектору Х и приравнивая производную к нулю систему уравнений МНК
или
.
4)
Для оценки критерия значимости выборочных
коэффициентов регрессии оценивают
дисперсию выборочных коэффициентов
,
где cii
– элементы главной диагонали матрицы
.
s2 – дисперсия погрешности измерений.
Оценка s2 определяется по формуле
Рассчитывается
значение t
– параметра
.
Если полученное значение t больше, чем табличное ta при (N-3-1) степеней свободы, тогда Xi существенно отлично от нуля при уровне a.
Доверительные
границы для
определяются
по формуле
Тогда вероятность того, что величина Xi действительно находится в этих пределах, составит (1–a).
5) Для оценки адекватности регрессивной модели наблюдаемым величинам объема выпуска y рассчитывается коэффициент множественной детерминации:
,
где
.
При малом объеме выборки используется скорректированный коэффициент множественной детерминации
Чем
меньше отличается
от
единицы, тем более обосновано решение
о том, что выборочные коэффициенты
регрессии могут быть полезны для изучения
производственного процесса.
,
где K – число производственного капитала;
L – число производственных трудовых часов или, другими словами, число производственных единиц гуманного капитала
Или в линейном виде:
.
