
- •Белки, их строение и биологическая роль
- •Строение белков. Первичная структура.
- •Вторичная структура
- •Третичная структура
- •Понятие о нативном белке
- •Классификация. Биологические и химические свойства белков
- •Физико-химические свойства белков
- •Биохимия сложных белков
- •Некоторые особенности строения миоглобина и гемоглобина
- •Гемаглобинопатии
- •Ферменты
- •Механизм действия ферментов. Основные черты ферментативного катализа, его этапы.
- •1. Частичный протеолиз (Трипсиноген------ Трипсин)
- •Факторы, оказывающие влияние на активность ферментов.
- •Конкурентное ингибирование.
- •Неконкурентное ингибирование.
- •Биохимия нуклеотидов и нуклеиновых кислот. Матричные биосинтезы.
- •Характеристика репликации.
- •Транскрипция. Трансляция.
- •1 ).Инициация
- •1. Обмен веществ включает в себя 3 этапа:
- •Организация цпэ (по рис.1)
- •Пиридинзависимые дегидрогеназы (над, надф)
- •Флавинзависимые дегидрогеназы (фад,фмн)
- •Функции дыхательной цепи:
- •Дыхательный контроль.
- •Токсичное действие кислорода. Защита от токсичного действия кислорода.
- •Обмен углеводов.
- •Функции углеводов.
- •Всасывание углеводов в кишечнике.
- •Метаболизм глюкозы.
- •Гликолиз (дихотомический процесс).
- •Биомедицинское значение ферментативных реакций гликолиза.
- •Суммарная реакция и выход энергии при гликолизе.
- •Пентофозофосфатный путь ( пфп).
- •Биомедицинское значение.
- •Общая схема биохимических реакций пфп.
- •Медицинское значение.
- •Глюконеогенез.
- •Биомедицинское значение.
- •Биомедицинское значение.
- •Биосинтез гликогена.
- •Обмен фруктозы и галактозы.
- •Обмен липидов.
- •Функции липидов в организме.
- •Переваривание и всасывание жиров.
- •Желчные кислоты.
- •Всасывание продуктов гидролиза.
- •Биосинтез кетоновых тел.
- •Распад кетоновых тел.
- •Биосинтез высших жк.
- •Синтез жиров (таг).
- •Отличие действия инсулина в жировой ткани и печени:
- •Синтез холестерина.
- •Биосинтез Хс.
- •Ферменты.
- •Регуляция синтеза нуклеотидов.
- •Синтез пиримидиновых нуклеотидов.
- •Регуляция.
- •Катаболизм.
- •Катаболизм пуриновых нуклеотидов.
- •Регуляция обмена веществ. Гормоны (химические посредники).
- •1. По химической структуре:
- •2. По механизму действия;
- •3. По влиянию на организм:
- •Синтез и секреция гормонов.
- •Механизм действия гормонов белково-пептидной природы через вторичных посредников.
- •Эффекты, осуществляемые через ц амф.
- •Кальций как вторичный посредник.
- •Биохимия печени
- •Обезвреживающая функция печени
- •Обезвреживание веществ
- •Отличие этих цепей от цпэ
- •Биохимия крови
- •Белки плазмы крови
- •Сывороточный альбумин
- •Глобулины
- •Конверсия метгемоглобина
- •Биосинтез тема и его регуляция
- •Гемостаз
- •1 Фаза: первичный гемостаз.
- •2 Фаза: гемокоагуляция
- •Фибрина
- •Противосвертывающая система
- •Биохимический_анализ
- •Гормоны
- •Липотропины
3. По влиянию на организм:
гормоны, регулирующие обмен белков, жиров и углеводов: инсулин, глюкагон, адреналин и кортикостероиды.
гормоны, регулирующие водно-солевой обмен: минералокортикоиды, альдостерон, АДГ-вазопресин, предсердный Na-уретический пептид.
регулирующие обмен Са и Р: паратгормон, кальцитонин, витамин ДЗ гормон или кальцитриол.
регулирующие обмен веществ, связанный с репродуктивной функцией (половые).
тропные гормоны, регулирующие деятельность эндокринных желез и выработку в них гормонов.
тиреоидные гормоны, регулирующие основной обмен веществ.
Синтез и секреция гормонов.
Секреторная активность эндокринных тканей регулируется по принципу обратных отрицательных связей.
В клетке гормон, как правило, синтезируется в одной части и секретируется в противоположной. Особенности синтеза и упаковки гормона зависят от химической природы.
Белково-пептидные гормоны после синтеза упаковываются в секреторные гранулы и хранятся в них до поступления в них определенных сигналов (например, глюкагон). Белково-пептидные гормоны синтезируются на полирибосомах гранулярного эндоплазматического ретикулума, в котором и накапливаются. Из него поступают в свободные от полисом участки, которые называются переходными элементами, где от мембраны ЭПР отпочковываются пузырьки, содержащие продукты секреции. Эти пузырьки мигрируют к комплексу Гольджи, который на внутренней поверхности мембраны содержит ферменты, которые подвергают белки химической модификации (например, у инсулина вырезается фрагмент ГШЦ, в результате чего синтезированный прогормон активируется).
Далее из будущих секреторных пузырьков осмотическим путем удаляется вода — концентрация белка в гормоне увеличивается в 20-30 раз, образуются зрелые секреторные пузырьки, они подходят к ЦМ и остаются здесь до поступления сигнала, под действием которого содержимое пузырьков высвобождается экзоцитозом. Гормон удерживается в гранулах разными способами. Гормоны с большой молекулярной массой (белковые) удерживаются благодаря размерам.
Гормоны небольшой молекулярной массы удерживаются в секреторных пузырьках благодаря соединению с другими веществами (например, окситацин и АДГ удерживаются нейрофизином 1 и 2).
Стероидные гормоны синтезируются в диффузной молекулярной форме, т.е. не упакованные сразу же после их синтеза.
Гормоны щитовидной железы могут храниться в фолликулах месяцами.
Поступив в кровоток и осуществив свой эффект, гормоны разрушаются, как правило, в печени.
Гидрофобные гормоны (стероидной природы или гормоны щитовидной железы) переносятся кровью в комплексе с транспортными белками и до отделения от белка остаются неактивными.
Механизм действия гормонов белково-пептидной природы через вторичных посредников.
Согласно гипотезе молекула гормона взаимодействует со специфическим рецептором, выступающим на поверхности (ЦМ) клетки-мишени - это вызывает конформационные изменения рецептора, что приводит к аллостерической активации фермента -аденилатциклазы (АЦ), который катализирует образование вторичного посредника цАМФ. В ответ на взаимодействие одной молекулы гормона с рецептором синтезируются сотни молекул вторичных посредников — цАМФ, т.е. происходит усиление сигнала от гормона. Каскад с цАМФ
Сигнал от первого посредника (гормона) передается через мембрану внутрь клетки посредством трех встроенных в мембрану белков: рецептора, G-белка, аденилатциклазы (АЦ) (аллостерический фермент, активный центр обращен в цитоплазму). G-белок - его активность зависит от ГТФ.
Гормон взаимодействует с рецептором на поверхности мембраны, образуя гормон -рецепторный комплекс. Сигнал от Г-Р комплекса передается на G-белок, в результате чего он отсоединяет от себя ГДФ и присоединяет ГТФ, он активируется. Может активировать другой мембранно-встроенный белок аденилатциклазу. G-белок активен до тех пор пока не произойдет гидролиз ГТФ, после этого он инактивируется и прекращает активность АЦ. —» его функция: преобразование и передача сигнала от гормона. Существует 2 типа G-белка:
активизирующий АЦ;
ингибирующий АЦ.
Активированная аденилатциклаза катализирует реакцию образования цАТФ из большого количества АТФ. Реакция идет с высокой скоростью, благодаря значительному снижению свободной энергии, поскольку АТФ превращается в бедную энергией цАМФ. Причем цАМФ образуется сотни.
Таким образом, произошло первое усиление сигнала. На каждую молекулу гормона вырабатывается сотни цАМФ (второго посредника).
В цитоплазме находится белок цАМФ - зависимая или акиназа, активность которой зависит от присутствия второго посредника. Она состоит из двух субъединиц: регуляторной и каталитической, которые соединены вместе. Не обладает ферментативной активностью.
При взаимодействии цАМФ с регуляторной субъединицей происходит отсоединение каталитической субъединицы, она меняет свою конформацию и активируется; приобретает способность фосфорилировать или дефосфорилировать белки (ферменты, ионные каналы) за счет концевой фосфатной группы АТФ. Акиназа обеспечивает второе усиление сигнала, т.к. фосфорилирует несколько белков. После активации акиназы избыток цАМФ разрушается под действием фермента фосфодиэстеразы до АМФ. цАМФ—► АМФ