Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Контрольная работа№1 спутник геод.doc
Скачиваний:
8
Добавлен:
17.11.2019
Размер:
327.68 Кб
Скачать

1. Сферическая астрономия

1.1. Системы координат, используемые в геодезической астрономии

1.1.1. Вспомогательная небесная сфера

Г еографические широты и долготы точек земной поверхности и азимуты направлений определяются из наблюдений небесных светил – Солнца и звезд. Для этого необходимо знать положение светил как относительно Земли, так и относительно друг друга. Положения светил могут задаваться в целесообразно выбранных системах координат. Как известно из аналитической геометрии, для определения положения светила  можно использовать прямоугольную декартову систему координат XYZ или полярную   R (рис. 1.1).

В прямоугольной системе координат положение светила  определяется тремя линейными координатами X, Y, Z. В полярной системе координат положение светила  задается одной линейной координатой, радиус-вектором R = О, и двумя угловыми: углом  между осью X и проекцией радиус-вектора на координатную плоскость XOY, и углом  между координатной плоскостью XOY и радиус-вектором R. Связь прямоугольных и полярных координат описывается формулами

X = R coscos;

Y = R cossin;

Z = R sin,

где R = .

Эти системы используются в тех случаях, когда линейные расстояния до небесных светил известны (например, для Солнца, Луны, планет, искусственных спутников Земли). Однако для многих светил, наблюдаемых за пределами Солнечной системы, эти расстояния либо чрезвычайно велики по сравнению с радиусом Земли, либо неизвестны. Чтобы упростить решение астрономических задач и обходиться без расстояний до светил, полагают, что все светила находятся на произвольном, но одинаковом расстоянии от наблюдателя. Обычно это расстояние принимают равным единице, вследствие чего положение светил в пространстве может определяться не тремя, а двумя угловыми координатами  и  полярной системы. Известно, что геометрическое место точек, равноудаленных от данной т очки О, есть сфера с центром в этой точке.

Вспомогательная небесная сфера – воображаемая сфера произвольного или единичного радиуса, на которую проецируются изображения небесных светил (рис. 1.2). Положение любого светила  на небесной сфере определяется при помощи двух сферических координат,  и :

x = coscos;

y = cossin;

z = sin.

В зависимости от того, где расположен центр небесной сферы О, различают:

1) топоцентрическую небесную сферу – центр находится на поверхности Земли;

2) геоцентрическую небесную сферу – центр совпадает с центром масс Земли;

3) гелиоцентрическую небесную сферу – центр совмещен с центром Солнца;

4) барицентрическую небесную сферу – центр находится в центре тяжести Солнечной системы.

1.1.2. Основные круги, точки и линии небесной сферы

Основные круги, точки и линии небесной сферы изображены на рис. 1.3.

О дним из основных направлений относительно поверхности Земли является направление отвесной линии, или силы тяжести в точке наблюдения. Это направление пересекает небесную сферу в двух диаметрально противоположных точках – Z и Z'. Точка Z находится над центром и называется зенитом, Z' – под центром и называется надиром.

Проведем через центр плоскость, перпендикулярную отвесной линии ZZ'. Большой круг NESW, образованный этой плоскостью, называется небесным (истинным) или астрономическим горизонтом. Это есть основная плоскость топоцентрической системы координат. На ней имеются четыре точки: S – точка юга, N – точка севера, W – точка запада, E – точка востока. Прямая NS называется полуденной линией.

Прямая PNPS, проведенная через центр небесной сферы параллельно оси вращения Земли, называется осью мира. Точка PNсеверный полюс мира; PSюжный полюс мира. Вокруг оси мира происходит видимое суточное движение небесной сферы.

Проведем через центр небесной сферы плоскость, перпендикулярную оси мира PNPS. Большой круг QWQ'E, образованный в результате пересечения этой плоскостью небесной сферы, называется небесным (астрономическим) экватором. Здесь Q – верхняя точка экватора (над горизонтом), Q' – нижняя точка экватора (под горизонтом). Небесный экватор и небесный горизонт пересекаются в точках W и E.

Плоскость PNZQSPSZ'Q'N, содержащая в себе отвесную линию и ось мира, называется истинным (небесным) или астрономическим меридианом. Это плоскость параллельна плоскости земного меридиана и перпендикулярна к плоскости горизонта и экватора. Ее называют начальной координатной плоскостью.

Проведем через ZZ' вертикальную плоскость, перпендикулярную небесному меридиану. Полученный круг ZWZ'E называется первым вертикалом.

Большой круг ZZ', по которому вертикальная плоскость, проходящая через светило , пересекает небесную сферу, называется вертикалом, или кругом высот светила.

Большой круг PNPS, проходящий через светило перпендикулярно небесному экватору, называется кругом склонения светила.

Малый круг nn', проходящий через светило параллельно небесному экватору, называется суточной параллелью. Видимое суточное движение светил происходит вдоль суточных параллелей.

Малый круг аа', проходящий через светило параллельно небесному горизонту, называется кругом равных высот, или альмукантаратом.

В первом приближении орбита Земли может быть принята за плоскую кривую – эллипс, в одном из фокусов которого находится Солнце. Плоскость эллипса, принимаемого за орбиту Земли, называется плоскостью эклиптики.