- •Содержание
- •Введение
- •Возникновение и развитие металлургии
- •История развития металлургии в России. Возникновение и развитие высшего металлургического образования
- •Выдающиеся российские ученые металлурги
- •Павел Петрович Аносов (1799 – 1851 гг.)
- •Павел Матвеевич Обухов
- •Дмитрий Константинович Чернов
- •Владимир Ефимович Грум-Гржимайло
- •Михаил Александрович Павлов
- •Евгений Оскарович Патон (1870 – 1953 гг.)
- •Борис Евгеньевич Патон
- •Николай Тимофеевич Гудцов
- •Иван Павлович Бардин
- •Сергейй Иванович Губкин
- •История развития металлургии и металлургического образования на Урале. Подготовка персонала для металлургических предприятий
- •2.1. Основатель Уральской научно-педагогической школы по обработке металлов давлением
- •Головин Аким Филиппович
- •Развитие теории обработки металлов давлением и работа на заводах
- •Выдрин в.Н. Доктор технических наук, Тарновский и.Я. Доктор технических наук, профессор, основатель кафедры профессор, заведующий кафедрой
- •Создание новых методов расчета формоизменения и силы деформации
- •Красовский н.Н. И Поздеев а.А. Выпускники 1949 г., отличные студенты и спортсмены, стали членами Академии наук ссср
- •Кафедра "Обработка металлов давлением"
- •Основы материаловедения
- •3.1.1. Классификация металлов
- •Средний химический состав земной коры по а.П. Виноградову (мощность 16 км без океана и атмосферы), % мас.
- •3.1.2. Потребительские свойства некоторых металлов и сплавов. Область применения
- •Примерные объемы мирового годового производства некоторых металлов
- •Разбивка нанопорошков по типам
- •3.2. Металлофонд России
- •Кристаллическое строение металлов. Аллотропические или полиморфные превращения
- •От расстояния между ними
- •Элементарной ячейки.
- •Аллотропические формы некоторых металлов
- •3.4. Структура реальных кристаллов
- •3.5. Кристаллизация металлов
- •3.6.1. Диаграмма состояния сплавов, образующих механическую смесь компонентов
- •Механическую смесь компонентов:
- •(Кристаллизации) эвтектики
- •3.6.2. Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твердом состоянии
- •3.6.3. Диаграмма состояния сплавов, образующих ограниченные твердые растворы
- •3.6.4. Диаграмма состояния сплавов, образующих химические соединения
- •Системы Mg-Pb
- •Системы Cu-Zn
- •Свойства и деформация металлов и сплавов
- •Физико-химические и физико-механические свойства металлов и сплавов
- •В таблице Менделеева
- •Физические и механические свойства важнейших металлов
- •3.7.2. Механические свойства металлов и сплавов
- •Деформация металлов и сплавов
- •Сдвига в положение а'в' (б); в - выход дислокации на поверхность кристалла
- •Возврат и рекристаллизация
- •Основы металлургии
- •4.1. Принципиальные основы производства металлов
- •4.2. Руды, подготовка руд к металлургическому переделу
- •4.2.1. Способы добычи руд
- •4.2.2. Цель подготовки руд к металлургическому переделу
- •4.2.3. Дробление и измельчение руд
- •4.2.4. Грохочение и классификация
- •А) в открытом цикле; б) в закрытом
- •4.2.5. Обогащение руд
- •Сепаратора:
- •Для очистки барабана;
- •4.2.6. Обжиг руд
- •Температуры плавления и кипения хлоридов металлов
- •4.2.7. Усреднение
- •4.2.8. Окускование
- •Рекуперации и охлаждения
- •Основы технологии производства важнейших металлов и сплавов
- •5.1. Производство железа – чугунов и сталей
- •5.1.1. Рудная база черной металлургии
- •5.1.2. I стадия - подготовка железных руд к плавке
- •Важнейшие железорудные месторождения России
- •Химические составы железной руды Оленегорского месторождения и полученного из нее концентрата
- •Месторождения
- •5.1.3. II стадия - доменное производство
- •5.1.3.1. Химические процессы в доменной печи
- •5.1.3.2. Управление доменным процессом
- •Калькуляция себестоимости передельного чугуна (в ценах 1985 г.)
- •Калькуляция себестоимости передельного чугуна (в ценах 1985 г.)
- •5.1.3.3. Мероприятия по повышению количества воздуха, вдуваемого в печь
- •5.1.3.4. Устройство и оборудование доменной печи
- •Ленточными конвейерами (галереи обозначены стрелками)
- •В доменную печь:
- •5 .1.3.5. Устройства для подачи и нагрева дутья
- •И «на дутье» (б):
- •5.1.3.6. Устройства для обслуживания горна и уборки чугуна и шлака
- •Огнеупорной массы; 6 - механизм поворота пушки к летке; 7 - защелка; 8 - люк для загрузки огнеупорной массы
- •Доменной печи:
- •5.1.3.7. Использование продуктов доменной плавки
- •5.1.4. III стадия - сталеплавильное производство
- •5.1.4.1. Принципиальные основы сталеплавильного производства
- •Химические составы чугуна и стали
- •5.1.4.2. Шлаковый режим сталеплавильного процесса
- •5.1.4.3. Мартеновское производство стали
- •5.1.4.4. Кислородно-конвертерный способ производства стали
- •Элементов в металле по ходу продувки в кислородном конвертере
- •Конвертерных газов:
- •5.1.4.5. Выплавка стали в конвертерах дуплекс-процессом
- •Транспортного назначения
- •5.1.4.6. Производство стали в электрических печах
- •5.1.4.6. Разливка стали
- •5.1.4.7. Классификация сталей
- •5.1.4.8. Бездоменные способы получения железа
- •Составы восстановительного и колошникового газов шахтиой восстановительной печи, %
- •5.1.4.9. Получение особо чистого железа
- •5.1.4.10. Производство ферросплавов
- •Удельные расходы шихтовых материалов и электроэнергии при выплавке ферросплавов
- •5.1.5. IV стадия - методы повышения качества стали
- •5.1.6. Современный электросталеплавильный цех по производству трубной непрерывнолитой заготовки
- •Технические характеристики мнлз №1
- •5.2. Производство алюминия
- •5.2.1. Рудная база
- •Из высококремиземистых бокситов
- •5.2.2. II стадия - получение а12о3
- •Выщелачивания бокситов:
- •Алюминатного раствора:
- •Перемешиванием; 2- гидроциклон;
- •5.2.3. III стадия - получение металлического алюминия
- •Р ис. 5.50. Схема электролиза для получения алюминия:
- •5.2.4. IV стадия - получение чистого алюминия
- •5.3. Производство меди
- •5.3.1. Рудная база
- •Химический состав медных руд, %
- •5.3.2. I стадия передела - механическое обогащение руд
- •5.3.3. II стадия - выплавка штейна (химическое обогащение)
- •Пирометаллургическим способом
- •Р ис. 5.56. Схема распределения химических процессов по высоте шахтной печи при полупиритной плавке
- •Тепловой баланс полупиритной плавки
- •Р ис. 5.58. Схема печи для взвешенной плавки:
- •Р ис. 5.59. Схема печи Ванюкова:
- •5.3.4. III стадия - получение черновой меди
- •Р ис. 5.60. Схема горизонтального конвертера:
- •5.3.5. IV стадия - получение чистой меди
- •Распределение элементов медных анодов в процессе электролиза, %
- •5.4. Производство титана
- •5.4.1. I стадия - механическое обогащение ильменитовых руд
- •5.4.2. II стадия - химическое обогащение
- •5.4.3. Ill стадия - получение чистых TiCl4 и то2
- •Непрерывного действия:
- •И кипения (верхняя горизонталь) некоторых хлоридов; штриховкой показан температурный диапазон, в котором производится ректификация TiCl4
- •От примесей:
- •Хлоридов; 7 - бак для сбора высококипящих хлоридов; 8 - запорные и регулирующие краны;
- •5.4.4. Получение конечной продукции
- •Восстановлением TiCl4
- •Для алюмотермического производства ферротитаиа:
- •Производство изделий из металлов и сплавов металлургическими методами
- •6.1. Обработка металлов давлением
- •Классификация процессов обработки металлов давлением. Методы омд
- •Классификация процессов листовой штамповки
- •6.1.1.1. Прокатка
- •6.1.1.2. Ковка
- •Боёк; 3 - обрабатываемое изделие; 4 и 5 - верхний и нижний штампы;
- •6.1.1.3. Штамповка
- •6.1.1.4. Прессование
- •6.1.1.5. Волочение
- •6.1.2. Элементы теории обработки металлов давлением
- •Оценка степени деформации металлического тела
- •Напряженное состояние
- •Принцип минимума энергии деформации (наименьшего сопротивления)
- •Элементы теории продольной прокатки
- •Очаг деформации, угол захвата
- •Опережение и отставание
- •Уширение при прокатке
- •Усилие и давление при прокатке
- •Механическое оборудование прокатных цехов
- •Главная линия прокатного стана и ее элементы
- •Вспомогательное оборудование
- •Классификация прокатных станов
- •Для холодной прокатки жести:
- •И рельсобалочных станах:
- •И трамвайные рельсы; 8 - двутавровая балка; 9 - швеллер; 10 - z-образный профиль
- •Технология прокатного производства
- •Нагрев металла перед омд
- •Калибровка прокатных валков
- •Для упрощения рисунка из девяти калибров приведено только четыре
- •Производство заготовок
- •Стана 900/700/500
- •Производство рельсов и балок
- •Производство листового проката
- •Стана холодной прокатки
- •Обозначения те же, что и на рис. 6.23
- •Производство труб
- •6.2. Литейное производство
- •Принципиальная схема изготовления отливок
- •6.2.2. Формовочные материалы и смеси
- •6.2.2.1. Требования, предъявляемые к формовочным и стержневым смесям
- •Свойства компонентов формовочных и стержневых смесей
- •6.2.3. Изготовление форм
- •6.2.4. Заливка форм металлом
- •Основные элементы литниковых систем
- •Типы литниковых систем
- •6.2.5. Литейные сплавы
- •6.2.6. Дефекты отливок
- •6.2.7. Специальные методы литья
- •6.2.7.1. Литье по выплавляемым моделям
- •С выплавляемыми моделями
- •Литье в металлические формы
- •Литье под давлением
- •Литье под регулируемым давлением
- •Центробежное литье
5.4.2. II стадия - химическое обогащение
Высокое содержание железа в концентрате мешает эффективному извлечению титана из руды химическими методами, поэтому предварительно удаляют железо. Наиболее целесообразным оказалось осуществить отделение железа от титана в ходе восстановительной плавки, когда большая часть железа восстанавливается и образует расплавленный чугун, а оксид титана, который при этих условиях практически не восстанавливается, остается в шлаке. Чугун и шлак разделяются по плотности.
Плавку ведут в трехфазных дуговых электрических печах. Количество углерода в шихте рассчитывают на получение в шлаке 3-5% FeO. Шлаки с меньшим содержанием FeO обладают чрезмерно высокой вязкостью, что объясняется присутствием в них оксикарбида TiC TiO. В результате плавки получают шлак следующего состава. %:
TiO2 FeO SiO2 CaO А12О3 MgO
82-87 3-5 2,8-5,6 0,3-1,2 2-6 2,0-5,6
В небольших количествах в шлаке присутствует V2О5.
5.4.3. Ill стадия - получение чистых TiCl4 и то2
Наиболее удобным оказалось извлечь титан из шлака методом хлорирования. В ходе этого процесса (при 700-900°С) основное количество титана в виде TiCl4 переходит в газовую фазу, в то время как большая часть остальных компонентов остаётся в твёрдом или жидком состояниях.
Суммарная реакция хлорирования
ТiО2 + 2С12 + С = TiCl4 + СО2 + 218 к Дж
является практически завершенной.
Одновременно с TiCI4 образуются летучие хлориды Fe; Mg; V; Сг; Та; Nb; Са; Mn.
В производственной практике применяют три способа хлорирования:
1) в шахтной печи - твёрдую (брикетированную) шихту,
2) в слоевом расплаве,
3) в печи кипящего слоя.
Устройство шахтного хлоратора и принцип его работы видны из рис. 5.62.
Рис. 5.62. Схема шахтного хлоратора
Непрерывного действия:
1 – корпус хлоратора; 2 – бункер с брикетами для хлорирования;
3 – питатель; 4 – шнековый питатель
Шихта для приготовления брикетов состоит из измельченного титанового шлака, нефтяного кокса, сульфитно-спиртового щелока, каменноугольного или нефтяного пека. Для повышения прочности брикеты обжигаются при 850-950°С без доступа воздуха. Вместе с брикетами в хлоратор загружается 20-25% кокса.
Подаваемый в фурмы хлор поднимается вверх и в реакционной зоне высотой 0,8-1,0 м расходуется практически полностью. Брикеты размером 50x40x35 мм хлоратора непрерывного действия: хлорируются за 3,0-3,5 ч. При установившемся режиме требуемая температура процесса - 900-1000°С - сохраняется за счет теплоты экзотермических реакций. Образующиеся в установке газы удаляются через газоотвод, а твёрдый остаток брикетов - огарок, представляющий пустую породу, опускается в зону охлаждения (ниже горизонта фурм) и непрерывно выгружается из печи питателем.
В ходе процесса титан распределяется между продуктами хлорирования следующим образом: извлекается в ТiCl4(газ) - 92-93%; уносится с пылью - 6-7%; теряется с огарком около 1%.
Удельная производительность шахтного хлоратора диаметром 1,8 и высотой 10 м составляет в час 1,8-2,0 т TiCl4 с 1 м3 объёма.
При повышенном содержании СаО и MgO в шлаке предпочтительнее производить хлорирование в слоевом расплаве. В качестве расплава используется отработанный электролит магниевых электролизеров следующего состава, %: 72-76 КСl; 14-16 NaCl и 4-6 MgCl2. Шихта подается на поверхность расплава (рис. 5.63).
Рис. 5.63. Схема хлоратора с солевым расплавом:
1 - газоотвод; 2 - подача газообразного хлора; 3 - графитовый электрод; 4 - стальные трубы для охлаждения водой; 5 - кожух хлоратора; б - шамотная футеровка; 7 - бункер с шихтой;
8 - шнековый питатель; 9 - перегородка для создания циркуляции сплава; 10-фурма;
11, 12 - донные графитовые электроды; 13 - нижний слив расплава
Хлор поступает в нижнюю часть хлоратора через фурмы и газораспределительную решетку. При удельном расходе хлора 40-60 м3/ч на 1 м3 расплава обеспечивается хорошее перемешивание его барботирующим хлором. В расплаве поддерживается концентрация ТiO2 2-3%, углерода 7-9%. При высоте расплава 3,0-3,2 м хлор успевает практически полностью прореагировать с ТiO2. Необходимая температура расплава - 800-850°С - поддерживается за счет тепла экзотермических реакций. Избыточное тепло отводится с помощью установленных в стенке хлоратора кессонов из графитовых плит, охлаждаемых водой. По мере накопления в расплаве MgCl2, СаСl2, FeCl2 часть его выпускают и в ванну добавляют свежий расплав.
Пылеулавливание и конденсация хлоридов. Газовая фаза, выходящая из хлоратора, имеет сложный состав. Она содержит:
- неконденсируемые газы: СО, СO2, СОС12, N2, HCI, С12;
- низкокипящие хлориды - в нормальных условиях жидкости: TiCI4, SiCI4; VOCl3, NbCl5, ТаС15;
- низкокипящие хлориды - в нормальных условиях твердые вещества: FeCl3, A1Cl3;
- высококипящие хлориды СаС12, MgCI2, FeCl2, а также КС1 и NaCl; эти вещества уносятся из реактора в виде мелких твердых частичек и капелек жидкости.
Схема пылеулавливания и конденсации приведена на рис. 5.64.
Установка состоит из пылевых камер, в которых в результате охлаждения газа с 500-600 до 140-180°С конденсируются и осаждаются частицы твердых хлоридов; рукавного фильтра для дополнительной очистки газа от твердых частиц; двух оросительных конденсаторов, где в результате дальнейшего охлаждения хлориды SiCI4 и TiCl4 переходят в жидкое состояние и отделяются от газа. В качестве охлаждающего агента используют охлажденный до -10°С TiCl4. Перед выбросом в атмосферу газы проходят через санитарный скруббер, орошаемый известковым молоком для улавливания остатков хлора, фосгена, хлористого водорода. На ряде предприятий вместо рукавного фильтра используют солевой фильтр. Основное количество жидкого тетрахлорида титана насосом отсасывается из оросительных конденсаторов и направляется на дальнейшую обработку, а некоторая часть его возвращается в холодильники, из которых затем подается в оросительные конденсаторы.
Рис. 5.64. Схема раздельной конденсационной системы:
1 - пылевые камеры (кулера); 2 - сборник твердых хлоридов; 3 - рукавный фильтр;
4 - оросительные конденсаторы; 5 - водяной холодильник; 6 - погружной насос;
7 - холодильник, охлаждаемый рассолом до -10оС (раствор CaCl2)
Технический TiCl4 содержит довольно много примесей - хлоридов Ge, А1, Та, Nb; содержание Si и V доходит до 0,3% каждого.
Из рисунка 5.65 видно, что большинство хлоридов-примесей имеет температуры кипения, существенно отличающиеся от температуры кипения TiCl4 (136°С), и поэтому могут быть отделены от тетрахлорида титана ректификацией. Исключение составляет только оксихлорид ванадия VOCl3, который имеет температуру кипения, близкую к температуре кипения TiCl4. Поэтому ванадий выделяют из раствора до ректификации - восстанавливая VOCl3 порошками Сu или AI; получающийся оксихлорид VOCl2 выпадает в осадок.
Рис. 5.65. Температуры плавления (нижняя горизонталь)
