- •Содержание
- •Введение
- •Возникновение и развитие металлургии
- •История развития металлургии в России. Возникновение и развитие высшего металлургического образования
- •Выдающиеся российские ученые металлурги
- •Павел Петрович Аносов (1799 – 1851 гг.)
- •Павел Матвеевич Обухов
- •Дмитрий Константинович Чернов
- •Владимир Ефимович Грум-Гржимайло
- •Михаил Александрович Павлов
- •Евгений Оскарович Патон (1870 – 1953 гг.)
- •Борис Евгеньевич Патон
- •Николай Тимофеевич Гудцов
- •Иван Павлович Бардин
- •Сергейй Иванович Губкин
- •История развития металлургии и металлургического образования на Урале. Подготовка персонала для металлургических предприятий
- •2.1. Основатель Уральской научно-педагогической школы по обработке металлов давлением
- •Головин Аким Филиппович
- •Развитие теории обработки металлов давлением и работа на заводах
- •Выдрин в.Н. Доктор технических наук, Тарновский и.Я. Доктор технических наук, профессор, основатель кафедры профессор, заведующий кафедрой
- •Создание новых методов расчета формоизменения и силы деформации
- •Красовский н.Н. И Поздеев а.А. Выпускники 1949 г., отличные студенты и спортсмены, стали членами Академии наук ссср
- •Кафедра "Обработка металлов давлением"
- •Основы материаловедения
- •3.1.1. Классификация металлов
- •Средний химический состав земной коры по а.П. Виноградову (мощность 16 км без океана и атмосферы), % мас.
- •3.1.2. Потребительские свойства некоторых металлов и сплавов. Область применения
- •Примерные объемы мирового годового производства некоторых металлов
- •Разбивка нанопорошков по типам
- •3.2. Металлофонд России
- •Кристаллическое строение металлов. Аллотропические или полиморфные превращения
- •От расстояния между ними
- •Элементарной ячейки.
- •Аллотропические формы некоторых металлов
- •3.4. Структура реальных кристаллов
- •3.5. Кристаллизация металлов
- •3.6.1. Диаграмма состояния сплавов, образующих механическую смесь компонентов
- •Механическую смесь компонентов:
- •(Кристаллизации) эвтектики
- •3.6.2. Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твердом состоянии
- •3.6.3. Диаграмма состояния сплавов, образующих ограниченные твердые растворы
- •3.6.4. Диаграмма состояния сплавов, образующих химические соединения
- •Системы Mg-Pb
- •Системы Cu-Zn
- •Свойства и деформация металлов и сплавов
- •Физико-химические и физико-механические свойства металлов и сплавов
- •В таблице Менделеева
- •Физические и механические свойства важнейших металлов
- •3.7.2. Механические свойства металлов и сплавов
- •Деформация металлов и сплавов
- •Сдвига в положение а'в' (б); в - выход дислокации на поверхность кристалла
- •Возврат и рекристаллизация
- •Основы металлургии
- •4.1. Принципиальные основы производства металлов
- •4.2. Руды, подготовка руд к металлургическому переделу
- •4.2.1. Способы добычи руд
- •4.2.2. Цель подготовки руд к металлургическому переделу
- •4.2.3. Дробление и измельчение руд
- •4.2.4. Грохочение и классификация
- •А) в открытом цикле; б) в закрытом
- •4.2.5. Обогащение руд
- •Сепаратора:
- •Для очистки барабана;
- •4.2.6. Обжиг руд
- •Температуры плавления и кипения хлоридов металлов
- •4.2.7. Усреднение
- •4.2.8. Окускование
- •Рекуперации и охлаждения
- •Основы технологии производства важнейших металлов и сплавов
- •5.1. Производство железа – чугунов и сталей
- •5.1.1. Рудная база черной металлургии
- •5.1.2. I стадия - подготовка железных руд к плавке
- •Важнейшие железорудные месторождения России
- •Химические составы железной руды Оленегорского месторождения и полученного из нее концентрата
- •Месторождения
- •5.1.3. II стадия - доменное производство
- •5.1.3.1. Химические процессы в доменной печи
- •5.1.3.2. Управление доменным процессом
- •Калькуляция себестоимости передельного чугуна (в ценах 1985 г.)
- •Калькуляция себестоимости передельного чугуна (в ценах 1985 г.)
- •5.1.3.3. Мероприятия по повышению количества воздуха, вдуваемого в печь
- •5.1.3.4. Устройство и оборудование доменной печи
- •Ленточными конвейерами (галереи обозначены стрелками)
- •В доменную печь:
- •5 .1.3.5. Устройства для подачи и нагрева дутья
- •И «на дутье» (б):
- •5.1.3.6. Устройства для обслуживания горна и уборки чугуна и шлака
- •Огнеупорной массы; 6 - механизм поворота пушки к летке; 7 - защелка; 8 - люк для загрузки огнеупорной массы
- •Доменной печи:
- •5.1.3.7. Использование продуктов доменной плавки
- •5.1.4. III стадия - сталеплавильное производство
- •5.1.4.1. Принципиальные основы сталеплавильного производства
- •Химические составы чугуна и стали
- •5.1.4.2. Шлаковый режим сталеплавильного процесса
- •5.1.4.3. Мартеновское производство стали
- •5.1.4.4. Кислородно-конвертерный способ производства стали
- •Элементов в металле по ходу продувки в кислородном конвертере
- •Конвертерных газов:
- •5.1.4.5. Выплавка стали в конвертерах дуплекс-процессом
- •Транспортного назначения
- •5.1.4.6. Производство стали в электрических печах
- •5.1.4.6. Разливка стали
- •5.1.4.7. Классификация сталей
- •5.1.4.8. Бездоменные способы получения железа
- •Составы восстановительного и колошникового газов шахтиой восстановительной печи, %
- •5.1.4.9. Получение особо чистого железа
- •5.1.4.10. Производство ферросплавов
- •Удельные расходы шихтовых материалов и электроэнергии при выплавке ферросплавов
- •5.1.5. IV стадия - методы повышения качества стали
- •5.1.6. Современный электросталеплавильный цех по производству трубной непрерывнолитой заготовки
- •Технические характеристики мнлз №1
- •5.2. Производство алюминия
- •5.2.1. Рудная база
- •Из высококремиземистых бокситов
- •5.2.2. II стадия - получение а12о3
- •Выщелачивания бокситов:
- •Алюминатного раствора:
- •Перемешиванием; 2- гидроциклон;
- •5.2.3. III стадия - получение металлического алюминия
- •Р ис. 5.50. Схема электролиза для получения алюминия:
- •5.2.4. IV стадия - получение чистого алюминия
- •5.3. Производство меди
- •5.3.1. Рудная база
- •Химический состав медных руд, %
- •5.3.2. I стадия передела - механическое обогащение руд
- •5.3.3. II стадия - выплавка штейна (химическое обогащение)
- •Пирометаллургическим способом
- •Р ис. 5.56. Схема распределения химических процессов по высоте шахтной печи при полупиритной плавке
- •Тепловой баланс полупиритной плавки
- •Р ис. 5.58. Схема печи для взвешенной плавки:
- •Р ис. 5.59. Схема печи Ванюкова:
- •5.3.4. III стадия - получение черновой меди
- •Р ис. 5.60. Схема горизонтального конвертера:
- •5.3.5. IV стадия - получение чистой меди
- •Распределение элементов медных анодов в процессе электролиза, %
- •5.4. Производство титана
- •5.4.1. I стадия - механическое обогащение ильменитовых руд
- •5.4.2. II стадия - химическое обогащение
- •5.4.3. Ill стадия - получение чистых TiCl4 и то2
- •Непрерывного действия:
- •И кипения (верхняя горизонталь) некоторых хлоридов; штриховкой показан температурный диапазон, в котором производится ректификация TiCl4
- •От примесей:
- •Хлоридов; 7 - бак для сбора высококипящих хлоридов; 8 - запорные и регулирующие краны;
- •5.4.4. Получение конечной продукции
- •Восстановлением TiCl4
- •Для алюмотермического производства ферротитаиа:
- •Производство изделий из металлов и сплавов металлургическими методами
- •6.1. Обработка металлов давлением
- •Классификация процессов обработки металлов давлением. Методы омд
- •Классификация процессов листовой штамповки
- •6.1.1.1. Прокатка
- •6.1.1.2. Ковка
- •Боёк; 3 - обрабатываемое изделие; 4 и 5 - верхний и нижний штампы;
- •6.1.1.3. Штамповка
- •6.1.1.4. Прессование
- •6.1.1.5. Волочение
- •6.1.2. Элементы теории обработки металлов давлением
- •Оценка степени деформации металлического тела
- •Напряженное состояние
- •Принцип минимума энергии деформации (наименьшего сопротивления)
- •Элементы теории продольной прокатки
- •Очаг деформации, угол захвата
- •Опережение и отставание
- •Уширение при прокатке
- •Усилие и давление при прокатке
- •Механическое оборудование прокатных цехов
- •Главная линия прокатного стана и ее элементы
- •Вспомогательное оборудование
- •Классификация прокатных станов
- •Для холодной прокатки жести:
- •И рельсобалочных станах:
- •И трамвайные рельсы; 8 - двутавровая балка; 9 - швеллер; 10 - z-образный профиль
- •Технология прокатного производства
- •Нагрев металла перед омд
- •Калибровка прокатных валков
- •Для упрощения рисунка из девяти калибров приведено только четыре
- •Производство заготовок
- •Стана 900/700/500
- •Производство рельсов и балок
- •Производство листового проката
- •Стана холодной прокатки
- •Обозначения те же, что и на рис. 6.23
- •Производство труб
- •6.2. Литейное производство
- •Принципиальная схема изготовления отливок
- •6.2.2. Формовочные материалы и смеси
- •6.2.2.1. Требования, предъявляемые к формовочным и стержневым смесям
- •Свойства компонентов формовочных и стержневых смесей
- •6.2.3. Изготовление форм
- •6.2.4. Заливка форм металлом
- •Основные элементы литниковых систем
- •Типы литниковых систем
- •6.2.5. Литейные сплавы
- •6.2.6. Дефекты отливок
- •6.2.7. Специальные методы литья
- •6.2.7.1. Литье по выплавляемым моделям
- •С выплавляемыми моделями
- •Литье в металлические формы
- •Литье под давлением
- •Литье под регулируемым давлением
- •Центробежное литье
4.2.3. Дробление и измельчение руд
Машины, которые применяют для дробления, дробилки, могут уменьшать размер кусков до 5-6 мм. Более мелкое дробление называют измельчением, его осуществляют в мельницах.
Хотя принципиально возможно дробление в одном агрегате от 1500 до 1-2 мм и меньше, практика показывает, что это экономически не выгодно. Поэтому на дробильно-обогатительных фабриках дробление осуществляют в несколько стадий, используя для каждой стадии наиболее подходящий тип дробилки. Обычно дробление осуществляют в три стадии: крупное - от 1500 до 250 мм, среднее - 250-50 мм, мелкое - 50-5 мм; измельчение - от 5 мм до нескольких микрометров. Таким образом, степень дробления, т.е. отношение максимальных размеров кусков до и после дробления для каждой стадии дробления составляет 5-10.
Большинство применяемых дробилок работает по принципу раздавливания кусков руды между двумя стальными сближающимися поверхностями. Для дробления руд применяются щековые дробилки (крупное и среднее дробление), конусные дробилки (крупное, среднее и мелкое дробление), валковые и молотковые дробилки (среднее и мелкое дробление).
Щековая дробилка (рис. 4.5) состоит из трёх основных частей: неподвижной вертикальной стальной плиты, называемой неподвижной щекой; подвижной щеки, подвешенной в верхней части, и кривошипно-шатунного механизма, сообщающего подвижной щеке колебательные движения. Материал в дробилку загружают сверху. При сближении щёк происходит разрушение кусков. При отходе подвижной щеки от неподвижной раздробленные куски опускаются под действием собственного веса и выходят из дробилки через разгрузочное отверстие.
Рис. 4.5. Схема щековой дробилки:
1 – подвижная щека; 2 – неподвижная щека
3 – разгрузочное отверстие; 4 – привод;
5 – распорные плиты;
6 – регулировочные пластины.
Конусные дробилки работают по такому же принципу, что и щековые, хотя существенно отличаются от последних по конструкции. Конусная дробилка (рис. 4.6) состоит из неподвижного конуса 1, подвижного конуса 2, подвешенного в верхней части. Ось подвижного конуса своей нижней частью входит эксцентрично во вращающийся вертикальный стакан 3, вследствие чего подвижный конус совершает кругообразные движения внутри неподвижного.
При приближении подвижного конуса к какой-то поверх-
ности неподвижного происходит дробление кусков, заполняю-
щих пространство между конусами в этой части дробилки, в то
время как в диаметрально противоположной части дробилки,
где поверхности конусов удалены на максимальное расстояние,
происходит разгрузка дроблёной руды. В отличие от щековых
дробилок в конусных отсутствует холостой ход, благодаря чему
производительность последних в несколько раз выше. Для сред-
него и мелкого дробления применяют короткоконусные дро-
билки, работающие по такому же принципу, что и конусные, но
несколько отличающиеся от них по конструкции.
Рис. 4.6. Схема конусной
дробилки
В валковой дробилке дробление руды происходит между двумя расположенными горизонтально параллельными стальными валками, вращающимися навстречу друг другу (рис.4.7).
Рис. 4.7. Валковая дробилка:
1 - рама; 2 - дробящие валки; 3 - подшипники;
4 - салазки; 5 - тяга с пружиной;
6 - регулировочные прокладки
Для дробления хрупких материалов невысокой прочности (известняка, боксита, угля и др.) применяют молотковые дробилки, основной частью которых (рис. 4.8) является вращающийся с большой скоростью (500-800 об/мин) ротор - вал с закреплёнными на нём стальными пластинами-молотками. Дробление материалов в дробилках такого типа происходит под действием многочисленных ударов молотков по падающим кускам руды.
Рис. 4.8. Молотковая дробилка:
1 - ротор; 2 - пластины-молотки;
3 - загрузочное отверстие; 4 - колосниковая решетка
Для измельчения руд обычно используют шаровые (рис. 4.9) или стержневые мельницы, представляющие собой вращающиеся вокруг горизонтальной оси цилиндрические барабаны диаметром 3-4 м, в которых вместе с кусками руды находятся стальные шары или длинные стержни. В результате вращения с относительно высокой скоростью (около 20 об/мин) шары или стержни, достигнув определённой высоты, падают или скатываются вниз (рис. 4.10), осуществляя измельчение кусочков руды между шарами или между шарами и поверхностью барабана. Мельницы работают в непрерывном режиме: загрузка рудой происходит через одну пустотелую цапфу, а разгрузка - через другую.
Как правило, измельчение производят в водной среде, благодаря чему не только устраняется пылевыделение, но и повышается производительность мельниц. В процессе измельчения происходит автоматическая сортировка частиц по крупности: мелкие переходят во взвешенное состояние и в виде пульпы (смеси частиц руды с водой) выносятся из мельницы, а более крупные, которые не могут находиться во взвешенном состоянии, остаются в мельнице и измельчаются дальше.
Рис.4.9. Продольный разрез шаровой мельницы:
1 - загрузочное устройство; 2 - зубчатый венец; 3 - стальные шары
Известны
случаи применения так называемых
мельниц самоизмельчения, которые работают по тако-
му же принципу, что и шаровые с той только разницей,
что измельчающими телами служат крупные куски ру-
ды. Из-за отсутствия шаровой загрузки удельный рас-
ход электроэнергии оказывается в таких мельницах
ниже, чем в шаровых, но при этом оказывается ниже и
производительность.
Рис. 4.10. Поперечный разрез
шаровой мельницы
