- •Введение (предмет, объект, основные этапы планирования и организации ису) [3]
- •Системный подход в ису Основные понятия Понятие системы [2,3]
- •Вспомогательные термины [2,3]
- •Конструктивное определение системы [2]
- •Системы управления
- •Классификация систем
- •Особенности экономических систем [2]
- •Основные принципы системного подхода
- •Принцип системности [2]
- •Принцип обратной связи [2]
- •Принцип гомеостазиса (саморегулирования) [2, 5]
- •Принцип моделирования [2]
- •Разнообразие моделей очень велико, они могут быть*:
- •Принцип «черного ящика» [2]
- •Принцип необходимого разнообразия [2]
- •Принцип внешнего дополнения [2]
- •Принцип оптимальности [?]
- •О ½ пары бъявление о контрольной работе по темам «Введение» и «Системный подход в ису».
- •Методы исследования систем управления
- •Методы активизации интуиции и опыта специалистов
- •Мозговая атака[2-5]
- •М лекция 8 етод синектики [4,5]
- •Метод «Дельфы» [2, 3, 5]
- •Общие принципы получения экспертной оценки [5]
- •Подбор экспертов,
- •1. Подбор экспертов.
- •Факторы, влияющие на количественный и качественный состав группы
- •Оценка качества эксперта - априорная, апостериорная, тестирование
- •2. Проведение опроса.
- •Методы проведения опроса экспертов
- •Методы получения суждения от эксперта
- •3. Обработка результатов опроса
- •Методы формирования групповой оценки
- •Т лекция 12 еорема Эрроу
- •Согласование оценок
- •Сценарный метод [3]
- •Морфологический подход [3]
- •Деловые игры [3]
- •Методы формального представления систем
- •Аналитические методы Обзор и классификация
- •Принятие решений в условиях риска
- •Принятие решений в условиях «дурной» неопределенности
- •Статистические методы
- •Теоретико-множественные методы
- •Прочие методы
- •Объявление о контрольной работе по теме «Методы ису».
Деловые игры [3]
Деловые игры представляют собой модели принятия управленческих решений путем имитации различных ситуаций в форме игры по заданным правилам между отдельными людьми (группами людей) людей, возможно, с участием компьютера. Они способствуют наиболее эффективному овладению новыми знаниями и методами решения сложных практических задач. Например, проведение студентами экспертизы на практических занятиях осуществлялось в форме деловой игры.
Методы формального представления систем
В МПФС можно выделить:
1) аналитические методы;
2) статистические методы;
3) теоретико-множественные методы;
4) логические методы;
5) лингвистические и семиотические методы;
6) графические методы и пр.
Названные методы могут использоваться в различных комбинациях, а также в сочетании с МАИС.
Аналитические методы Обзор и классификация
К аналитическим относится большинство методов исследования операций.
Исследование операций в широком смысле слова представляет собой математический аппарат поддержки процесса принятия решений в различных областях человеческой деятельности. При этом операцией называют любое управляемое мероприятие, объединенное общим замыслом и направленное на достижение определенной цели.
Для моделирования операций используются оптимизационные модели. В большинстве из них используется аппарат математического программирования: максимизируется или минимизируется целевая функция при заданных ограничениях. Задача математического программирования уже рассматривалась при изучении принципа оптимальности. Если все функции в модели – линейные, то это задача линейного программирования (примеры изучались на практических занятиях). В общем случае эти функции могут быть любыми, т.е. могут строиться и задачи нелинейного программирования. Те и другие задачи могут быть целочисленными (когда переменные принимают только целые значения) либо непрерывными (например, задача о самолетах, изученная на практических занятиях, представляет собой пример целочисленной линейной задачи, а задача о кондитерской фабрике – непрерывной, поскольку объем выпуска конфет может измеряться и дробным числом). Целочисленность может быть полной либо частичной (относиться ко всем или не ко всем переменным модели). Если параметры модели (числовые данные, характеризующие экономическую ситуацию) представляют собой не константы, а в свою очередь зависят от некоторого параметра (например, от времени), то такая задача будет параметрической (на практических занятиях изучались упрощенные примеры, когда одна из констант полностью заменяется параметром (а не функцией от параметра)).
К
½ пары
Для различных классов задач разработаны специальные методы решения. Студенты уже имеют опыт применения наиболее простых из подобных методов – графических способов решения. Однако, если переменных в модели более 2-3, ее уже невозможно решить упрощенно. Для решения таких задач используется более сложный математический аппарат: симплекс-метод для линейных моделей и различные модификации градиентных методов – для нелинейных. В рамках данной дисциплины не ставится задача подробного изучения этих методов. Программные средства, реализующие решение таких задач названными методами, являются доступными и широко известными. Например, программа Excel, входящая в стандартный пакет MSOffice, включает в себя надстройку «Поиск решения», предназначенную для решения задач математического программирования.
Особым видом оптимизационных моделей являются модели динамического программирования, с помощью которых исследуют многоэтапные операции. При этом, если эффективность всей операции складывается из критериев эффективности каждого этапа, то строится модель с аддитивным критерием, а если отдельные критерии перемножаются, то с мультипликативным критерием.
Особый вид оптимизационных моделей представляют собой также модели теории игр* (математические модели конфликтных ситуаций). Стороны в конфликте называют игроками. Здесь также существует большое разнообразие моделей - игры могут быть:
- коалиционные или бескоалиционные (в зависимости от того, позволяют ли правила сторонам согласовывать свои действия),
- конечные и бесконечные (в зависимости от того, имеется ли хотя бы у одной стороны бесконечное число стратегий, т.е. вариантов действий),
- с нулевой или ненулевой суммой (в играх с нулевой суммой общая величина проигрыша равняется величине выигрыша, т.е. сумма платежей равна нулю); и т.д.
Особый класс моделей теории игр составляют игры с природой. В таких играх одна из сторон (экономическая среда) не является сознательным противником, но создает проблему неопределенностью своих действий.
Рассмотрим методы решения таких моделей более подробно.
Как уже было сказано, речь пойдет о моделировании стохастических систем, т.е. необходимо будет учесть элемент неопределенности.
Условия неопределенности при принятии решений принято делить на:
а) условия риска (когда известны вероятности поведения природы);
б) условия «дурной неопределенности» (когда даже эти вероятности неизвестны).
