
- •Часть I.
- •11.2.3. Решение линейных дифференциальных уравнений
- •11.2.5. Исследование управляемого движения с помощью
- •Лекция 1.
- •Введение. Предмет курса
- •Характеристики Земли, ее атмосферы (см. Рис.1)
- •Лекция 2.
- •Аэродинамические силы и продольный момент изолированного крыла
- •Пример 1 (см. Рис. 10).
- •Пример 2.
- •Пример 3 (рис.11).
- •Лекция 3.
- •Полная аэродинамическая сила и продольный момент ла
- •4 Рис. 16 .1 Аэродинамические характеристики крыла
- •4.2 Системы координат и углы, определяющие положение ла в пространстве
- •Лекция 4.
- •4.3 Полная аэродинамическая сила всего ла
- •Примеры
- •4.4.Полный момент ла, обусловленный аэродинамическими силами
- •Уравнения движения ла
- •5.1 Уравнения движения в векторной форме
- •Лекция 5.
- •5.2 Уравнения движения ла в скалярной форме
- •Кинематические уравнения. Связь между углами
- •6. 1 Кинематические уравнения движения центра масс (цм) ла можно получить, разложив векторное уравнение
- •6.2 Кинематические уравнения, описывающие вращение ла относительно нормальной системы координат (рис.24) Вид по стрелке а
- •Лекция 6.
- •Уравнения движения центра масс ла в частных случаях
- •7.1 Полёт без крена и скольжения относительно сферической невращающейся Земли при отсутствии ветра
- •7.2 Полет без крена и скольжения относительно плоской невращающейся Земли при отсутствии ветра.
- •7.3 Горизонтальный полет с креном и без скольжения
- •7.4 Перегрузка. Уравнения движения центра масс в безразмерной форме
- •Лекция 8.
- •8.2 Установившийся набор высоты. Скороподъемность ла
- •8.3 Особенности летных характеристик и динамики вертолета
- •Лекция 9.
- •8.4. Диапазон высот и скоростей полета вертолета
- •8.5 Установившееся снижение самолета. Планирование
- •8.6 Виражи.
- •8.7 Правильный вираж (без скольжения, с креном и постоянной скоростью).
- •Лекция 10.
- •Методы наведения при атаке воздушной цели
- •9.1 Область возможных атак по методу погони
- •Лекция 11.
- •9.2 Движение ракеты в плотных слоях атмосферы
- •Лекция 12.
- •10. Устойчивость и управляемость движения
- •10.1. Виды устойчивости движения
- •10.2. Статическая и динамическая устойчивость и управляемость ла
- •Лекция 13.
- •10.3. Управление движением ла. Использование автоматических средств управления
- •Лекция 14.
- •10.4. Показатели статической устойчивости и управляемости
- •Лекция 15.
- •10.5 Диапазон центровок ла
- •11.Исследование возмущённого движения ла
- •11.1 Уравнения возмущённого движения ла
- •Лекция 16.
- •11.2 Математические методы исследования
- •11.2.1 Решение линейных дифференциальных уравнений с постоянными коэффициентами классическим методом
- •11.2.2 Алгебраические критерии устойчивости
- •Лекция 17.
- •11.2.3 Решение линейных дифференциальных уравнений с постоянными коэффициентами операторным методом
- •Пример.
- •11.2.4 Исследование управляемого движения с помощью передаточных функций
- •11.2.5 Исследование управляемого движения с помощью частотных характеристик
- •Литература Основная
- •Дополнительная
10.2. Статическая и динамическая устойчивость и управляемость ла
Как отмечалось ранее (см. раздел 10.1) обычно выделяется желаемая опорная траектория движения ЛА (на первом этапе) без учета возмущений, а затем рассматривается поведение ЛА (как системы: ЛА+ САУ+ летчик) для случая, когда реальное движение под действием возмущений отклонилось от опорного.
Многие опорные режимы таковы, что угловое ускорение или равно нулю, или невелико;´. В этом случае можно принять
;
(10.1)
и считать, что действующие на
ЛА моменты сбалансированы. Режимы,
удовлетворяющие (10.1) называются
балансировочными, а потребные для
них отклонения органов управления
называются балансировочными
отклонениями органов управления.
Потребные для балансировки ЛА отклонения
органов управления, перемещения рычагов
управления, усилия на них в установившемся
опорном движении количественно
характеризуют статическую управляемость.
Основными показателями статической
управляемости являются производные:
,
,
где Xв- величина
линейного отклонения ручки управления
рулем высоты; Pв-
усилие, прикладываемые к ручке; а
представленные производные – градиент
хода ручки и усилия по перегрузке.
Аналогично показатели используются
для оценки управляемости по скорости,
путевой (по рысканию) и поперечной
(по крену) статистической управляемости.
Оцениваются также максимальные значения
отклонения органов управления, усилий,
сама возможность балансировки на
предельных режимах полета.
Другая группа показателей – характеристики динамической управляемости. В этом случае рассматривается характер реакции ЛА на отклонение органов управления от их балансировочных значений при переходе от одного установившегося режима полета к другому, для парирования возмущений и для выполнения существенно неустановившихся маневров.
Оценка устойчивости опорного (невозмущенного) движения ЛА производится с помощью количественных показателей статической и динамической устойчивости. Статическая устойчивость ЛА характеризует равновесие сил и моментов в опорном движении. Статически устойчивым по тому или иному параметру движения называют ЛА, у которого отклонение этого параметра от опорного значения сразу же приводит к появлению силы или момента направленных на уменьшение этого отклонения. Если силы или моменты направлены на увеличение этого отклонения, ЛА – статически неустойчив.
Пример.
Пусть в опорном режиме, который является
сбалансированным горизонтальным
полетом
(см. рис.54а)
=const M=const
Рис. 54 а)
∆
Рис.
54
б)
(±∆α).
Если
- частная производная отрицательна, то
при ∆α>0 возникает пикирующий момент
∆Mz<0,
и при ∆α<0 – кабрирующий момент
∆Mz>0
(рис. 54 б), направленный на возвращение
ЛА в исходный режим движения.
Признак продольной статической
устойчивости: M
<0.
К количественным показателям статической устойчивости ЛА относятся степень продольной, путевой и поперечной статической устойчивости.
Другая группа показателей – характеристики динамической устойчивости. При определении динамической устойчивости оценивается уже не начальная тенденция к устранению возмущения, а конечное состояние – устойчивость или неустойчивость в смысле Ляпунова (обычно асимптотическая). К характеристикам динамической устойчивости относятся также показатели качества процесса уменьшения (затухания) возмущений: время затухания отклонений, характер движения в процессе их уменьшения, максимальные значения отклонений, колебательность или монотонность и другие.
Требования к количественным характеристикам (показателям) устойчивости и управляемости закреплены в Нормах летной годности гражданских самолетов (НЛГС-2), в Требованиях и нормативных документах военно-воздушных сил (ВВС) и других аналогичных документах.
Показатели устойчивости и управляемости проверяются в процессе летных испытаний и доводки ЛА. Как показывает опыт, обеспечить статическую и динамическую устойчивость и хорошую управляемость во всем диапазоне высот и скоростей полета очень трудно. Необходимые характеристики обычно обеспечиваются за счет специальных автоматических устройств.