Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ХИМИЯ VIT-REZ6.DOC
Скачиваний:
33
Добавлен:
17.11.2019
Размер:
140.29 Кб
Скачать

§ 3. Свойства разбавленных растворов неэлектролитов Осмотическое давление

Между осмотическим давлением разбавленных растворов неэлектролитов и газовым давлением существует количественная аналогия. К осмотическому давлению применимы законы газового состояния. Эта аналогия выражается законом Вант-Гоффа: осмотическое давление раствора численно равно тому давлению, которое производило бы растворенное вещество, если бы оно находилось при данной температуре в газообразном состоянии и занижало бы объем, равный объему раствора.

Зависимость осмотического давления от объема раствора, количества растворенного вещества и температуры выражается уравнением, аналогичным уравнению Менделеева—Клапейрона для газов:

Pосм .V =nRT,

Росм – осмотическое давление раствора, V – объем раствора, n – число молей растворенного вещества, R универсальная газовая постоянная, Т — абсолютная температура.

Заменив в этом выражении n/V (число молей растворенного вещества в единице объема) на С, получим выражение

Pосм RT,

где С — молярная концентрация. Выразив С через т/М (т – масса растворенного вещества и М — его молекулярная масса), получим формулу, удобную для вычисления молекулярной массы растворенного вещества:

Pосм =(m/M) .RT

Растворы, обладающие одинаковым осмотическим давлением называются изотоническими.

Пример 1. Вычислить величину осмотического давления раствора, в 1 л которого содержится 0,2 моля неэлектролита, если температура равна 17 °С.

Решение. Выше было показано, что при выражении объема в литрах уравнение Менделеева—Клапейрона имеет вид PV=10 3RT (ом. гл.1). Соответственно Pосм=103СRT , тогда подстановка в это уравнение известных величин (С=0,2 моль/л; R=8,314 Дж/моль.К; Т=290 К) приводит к следующему результату:

Росм .0,2 .8,314 .290 .103 = 482190 Па @ 482,2 кПа.

Пример 2. Определить молекулярную массу глюкозы, если осмотическое давление раствора, содержащего 6 г глюкозы в 1 л раствора, равно 83,14 кПа при 27 °С.

Решение. Находим молярную массу глюкозы:

M = mRT . 103 /Pосм = 6 . 8,314 . 300 . 103 /83140 = 180 г/моль,

откуда молекулярная масса глюкозы равна 180 (у. е.).

Заметим, что при одинаковой температуре изотоническими будут растворы с одинаковой молярной концентрацией неэлектролита.

Пример 3. Определить массу глюкозы C6H12O6 , которую должен содержать 1 л раствора, чтобы быть изотоничным раствору, содержащему в 1 л 9,2 г глицерина С3Н3О3.

Решение. Определим молярную концентрацию глицерина:

(9,2 г/л)/92 г/моль =0,1 моль/л.

Такое же количество глюкозы должно содержаться в изотоническом растворе, следовательно, искомая масса глюкозы равна

180 .0,1=18 г/л.

Криоскопия и эбулиоскопия

Растворы неэлектролитов замерзают при более низкой температуре, а кипят при более высокой температуре, чем чистый растворитель. Понижение температуры замерзания и повышение температуры кипения раствора пропорциональны концентрации растворенного вещества (II закон Рауля):

Dt°зам=Km и Dt°кип=Em,

где Dt° — понижение температуры замерзания или повышение температуры кипения раствора; К и Е — криоскопическая и эбулиоскопическая константы соответственно; т — концентрация растворенного вещества в молях на 1000 г растворителя (моляльная концентрация).

Так как m=g/M, где g масса растворенного вещества, а M его молекулярная масса, то для раствора, содержащего gг неэлектролита в 1000 г растворителя, II закон Рауля можно записать в виде

Dt°зам=Kg/M и M=Kg/Dt°зам

или Dt°кип=Eg/M и M=Eg/Dt°кип

Если g граммов неэлектролита, имеющего молекулярную массу М растворены в G граммах растворителя, то

Dt°зам=Kg1000/MG и Dt°кип=Eg1000/MG

а формулы для вычисления молекулярной массы неэлектролита отсюда

M=1000Kg/Dt°замG и M=1000Eg/Dt°кипG

Приведенные выше формулы позволяют определять температуры замерзания и кипения растворов неэлектролитов по их концентрации, а также находить молекулярную массу растворенного вещества по понижению температуры замерзания или повышению температуры кипения раствора.

Значения криоскопических и эбулиоскопических констант некоторых растворителей приведены в табл. 13 приложения.

Пример 1. Вычислить температуру замерзания раствора, содержащего 44 г глюкозы C2H12O6 в 0,2 кг воды.

Решение. В 0,2 кг воды содержится 44 г глюкозы, значит, в 1000 г воды ее будет (1000/200) . 44=220 г, что составляет 220/180=1,22 моля (180 — молекулярная масса глюкозы). Криоскопическая константа воды равна 1,86°. Теперь вычислим Dt°зам:

Dt°зам = Km = 1,86° . 1,22=2,27°

следовательно, раствор будет замерзать при —2,27 °С.

Пример 2. При растворении 2,626 г фенола С6Н5ОН в 100 г этилового спирта температура кипения повысилась на 0,324°. Вычислить молекулярную массу фенола.

Решение. Подставим известные величины в формулу:

M = 1000Eg/Dt°кипG = 1,16 . 1000. 2,626/(0,324 . 100) = 91