
- •Почему усложняется связь дизеля с колесами тепловоза
- •Как связать дизель с колесами тепловоза?
- •Понятие об экипаже
- •Как расположить оборудование?
- •Условия возникновения процесса горения
- •Схемы дизелей
- •Степень сжатия
- •Рабочие циклы дизелей
- •Продувка цилиндра двухтактного дизеля
- •Фазы газораспределения четырехтактного и двухтактного дизелей
- •Индикаторная диаграмма
- •Мощность дизеля среднее индикаторное давление
- •Понятие об энергии
- •Подсчет работы и мощности дизеля
- •Пути повышения мощности дизеля
- •Наддув. Турбокомпрессоры. Кпд дизеля что такое наддув и как он осуществляется?
- •Что дает экономия топлива?
- •Коэффициент полезного действия дизеля и баланс энергии в дизеле
- •Блок дизеля, цилиндровые втулки и поршни блок дизеля и поддизельная рама
- •Цилиндровые втулки
- •Поршневые кольца
- •Поршневые пальцы
- •Шатунно-кривошипный механизм шатуны
- •Что представляет собой коленчатый вал
- •Конструктивные особенности коленчатого вала
- •Подшипники коленчатого вала
- •Вертикальная передача
- •Крутильные колебания. Антивибраторы что такое крутильные колебания и как с ними бороться?
- •Механизм газораспределения окна и клапаны
- •Механизм газораспределения
- •Особенности механизма газораспределения
- •Опливная система и аппаратура назначение и схемы топливных систем дизеля
- •Распыливание топлива
- •Топливные насосы высокого давления
- •Форсунки
- •Автоматическое регулирование для чего нужны регуляторы?
- •Принцип работы центробежного регулятора прямого действия
- •Центробежный регулятор непрямого действия
- •Понятие о жесткой обратной связи
- •Упругая (гибкая) обратная связь в регуляторе непрямого действия. Изодромный регулятор
- •Объединенный регулятор
- •Электрогидравлический механизм затяжки пружины
- •Охлаждающее устройство дизеля для чего и чем охлаждают детали дизеля?
- •Как вода охлаждает детали дизеля?
- •Чем охлаждать масло?
- •Водомасляный теплообменник
- •Чем охлаждать наддувочный воздух?
- •Система автоматического регулирования температуры
- •Очистка масла, топлива и воздуха важное условие надежной работы дизеля
- •Фильтр грубой очистки масла
- •Фильтр тонкой очистки масла
- •Центробежный очиститель масла
- •Топливные фильтры
- •Воздухоочистители
- •Виды электрических передач требования к электрическому оборудованию
- •Основные виды электрических передач
- •Принцип действия генератора постоянного тока принцип действия генератора постоянного тока
- •Основные показатели работы генератора
- •Внешняя характеристика тягового генератора
- •Устройство тягового генератора постоянного тока
- •Яговый генератор переменного тока почему стали применять тяговые генераторы переменного тока?
- •Синхронный тяговый генератор
- •Двухмашинный агрегат и тахогенераторы особенности устройства и характеристики возбудителей
- •Двухмашинный агрегат
- •Тахогенератор тепловоза
- •Синхронный подвозбудитель тепловоза 2тэ10л
- •Тяговые электродвигатели постоянного тока принцип действия электродвигателя постоянного тока
- •Основные показатели работы и свойства электродвигателя постоянного тока
- •Устройство тяговых электродвигателей тепловозов
- •Как расширить диапазон скорости тепловоза
- •Почему на тепловозах нельзя применять контрток? электродинамическое торможение
- •Тяговые двигатели переменного тока
- •Аккумуляторные батареи аккумулятор — химический источник тока
- •Свинцовый аккумулятор
- •Щелочной аккумулятор
- •Устройство аккумуляторных батарей тепловозов
- •Контакторы
- •Контроллер машиниста
- •Реверсор
- •Кнопочный выключатель и тумблеры
- •Реле назначение реле
- •Реле обратного тока
- •Реле переключения (перехода)
- •Реле заземления
- •Реле боксования
- •Реле давления масла, температурное реле, реле времени реле давления масла
- •Температурное реле
- •Реле времени
- •Регулятор напряжения
- •Рансформаторы в системах автоматического регулирования мощности дизель-генератора
- •Трансформаторы постоянного напряжения и тока
- •Полупроводниковые вентили-диоды и стабилитроны
- •Выпрямление переменного тока
- •Транзисторы и тиристоры
- •Полупроводниковый регулятор напряжения
- •Основные группы электрических цепей тепловоза
- •Цепи возбуждения тягового генератора и возбудителя
- •Получение жестких динамических характеристик тягового генератора
- •Цепи возбуждения возбудителя в системах машинного регулирования мощности генератора
- •Цепи освещения
- •Колесная пара
- •Как установить и соединить тяговый электродвигатель с колесной парой?
- •Буксы и подшипники
- •Рессорное подвешивание
- •Тележка и ее рама
- •Главная рама и кузов тепловоза
- •Опоры кузова. Возвращающие устройства
Степень сжатия
Газ, как известно, обладает способностью изменять свой объем: он может расширяться и сжиматься. Процесс увеличения объема газа называется расширением, а процесс уменьшения объема газа — сжатием. Предположим, что при нахождении поршня в н. м. т. воздух в цилиндре займет объем V1, равный 28,3 л (рис. 17), а при достижении поршнем в. м. т. объем сократится до 2,3 л (объем V2). Это значит, что при сжатии объем воздуха уменьшился в 12,3 раза. В таких случаях говорят, что двигатель имеет степень сжатия, равную 12,3. Объем V2 называют объемом камеры сжатия. Объем V1, состоящий из рабочего объема и объема камеры сжатия, есть полный объем цилиндра.
Рис. 17. Определение степени сжатия
Таким образом, степень сжатия определяется как отношение полного объема цилиндра (в котором воздух размещался до сжатия) к объему камеры сжатия (который воздух занимает после сжатия). Степень сжатия двигателя обозначается греческой буквой E. У современных тепловозных дизелей степень сжатия составляет обычно 12 — 16. У карбюраторных двигателей внутреннего сгорания, где сжимается не воздух, а горючая смесь, степень сжатия значительно меньше. Поэтому тепловозные дизели и называют двигателями высокого сжатия. Зачем же повышают степень сжатия? Делается это для того, чтобы повысить температуру и давление сжимаемого воздуха перед сгоранием. Если, например, атмосферный воздух быстро сжать до давления порядка 2,94—4,9 МПа (30—50 кгс/см2), то температура его достигнет 500 — 600° С, т. е. превысит температуру самовоспламенения дизельного топлива. Нагретый до высокой температуры воздух и будет той «спичкой», которая зажжет жидкое топливо, впрыскиваемое в цилиндр с помощью форсунок. Но высокая степень сжатия выгодна не только поэтому. Чтобы переход теплоты в работу был наиболее полным, нужно сжечь топливо в возможно меньшее время, измеряемое тысячными долями секунды. А достигнуть этого без высокого давления и температуры нельзя.После воспламенения частиц распыленного топлива начинается выделение большого количества теплоты, сопровождающееся вследствие этого быстрым нарастанием давления и температуры внутри цилиндра дизеля. В процессе горения топлива давление газов в цилиндре повышается до 9,8— 11,7 МПа (100—120 кгс/см2) [например, у дизелей 10Д100 оно достигает 9,8—10,6 МПа (100—110 кгс/см2)], а температура — до 1800° С и более. При таких высоких температурах и давлениях преобразование теплоты в работу более совершенно. Таким образом, величина степени сжатия оказывает большое влияние на экономичность рабочего процесса и поэтому является важнейшей конструктивной характеристикой двигателя. Чем выше степень сжатия, тем выше к. п. д. двигателя. Казалось бы, что степень сжатия выгодно иметь как можно больше. Однако в тепловозных дизелях степень сжатия, как указывалось, не превосходит величины 16. Это объясняется тем, что рост давления в конце сжатия приводит к значительному увеличению максимального давления сгорания. При этом резко увеличиваются усилия, действующие на детали цилиндро-поршневой группы и шатунно-кривошипного механизма, что приводит к их интенсивному износу: дизель быстро приходит в негодность