Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курсовая - Преобразователи частоты.DOC
Скачиваний:
203
Добавлен:
02.05.2014
Размер:
864.77 Кб
Скачать

Определение предельного тока через полупроводниковую структуру прибора для установившихся режимов работы.

Предельный ток прибора в установившемся режиме работы при заданных условиях охлаждения рассчитывается по формуле

, где

pn] – максимально допустимая температура полупроводниковой структуры ,

с] – заданная температура окружающей среды .

В соответствии с заданием преобразователь работает в климатических условиях У3 по ГОСТ 15543-70. (Климат умеренный. Преобразователь работает в закрытых помещениях с естественной вентиляцией без искусственно регулируемых климатических условий, где колебания температуры и влажности воздуха, и воздействия песка и пыли существенно ниже, чем на открытом воздухе. Токр.ср. = -40 оС – +40 оС, DT=40oC/8часов.)

RT – общее установившееся тепловое сопротивление (при условии охлаждения). С выбранным охладителем типа О241-80 для данного тиристора Rт=Rп-к+Rкпо-ос=0,24+0,24=0,48 ОС/Вт. Где Rкпо-ос – переходное тепловое сопротивление контактная поверхность охладителя – охлаждающая среда.

U0 – пороговое напряжение предельной ВАХ прибора.

Используя параметры данного тиристора и температурные условия эксплуатации (tmax = 40 ˚C) , определим предельный ток прибора.

А

Найдем предельный ток прибора в случае усреднения мощности в зависимости от коэффициента формы тока кф = IB / IB= . Для данной схемы коэффициент формы тока равен кф=55/33,3 = 1,652 (изменение величины кф в зависимости от угла отпирания прибора не учитываем).

Тогда

Как видно из расчетов токовый режим работы тиристоров в данном преобразователе примерно на 13% ниже максимально возможного.

Допустимая мощность потерь в вентиле.

Расчет ведем при условии, что выпрямитель работает при непрерывной установившейся нагрузке. Тогда температура структуры в установившемся режиме определяется как

Θpn = Θc +ΔP·Rт.

Допустимая мощность потерь равна

[ΔP] = ( [Θpn] – Θc)/Rт .

Rт = 0,48 ˚С/Вт – общее установившееся тепловое сопротивление прибора.

Подставив технические параметры, получим

[ΔP] = (100 – 40) / 0,48 = 125 Вт.

Номинальные тепловые потери при работе приборов меньше допустимых, примерно на 162 Вт (на каждый вентиль).

Определение углов коммутации вентилей.

Угол коммутации, определяемый активными сопротивлениями фазы трансформатора.

Величину угла перекрытия фаз (угла коммутации) найдем из выражения

, где

ΔUX – падение напряжения от коммутации при учете индуктивного сопротивления. Его можно определить из выражения:

Тогда

.

Уточнение коэффициента трансформации с учетом падения напряжения на элементах силовой схемы.

Определяем значение выпрямленного напряжения холостого хода с учетом распределения падения напряжения на элементах.

Находим действующее значение фазного напряжения вторичной обмотки силового трансформатора на холостом ходу (воспользуемся таблицей 1).

Тогда U2 /Ud0 = 0,855 , откуда U2 = 0,855*110,367=94,364 B .

Корректируем величину коэффициента трансформации:

ктр. = U1n min / U2 = (220 – 0.15*220) / 94,364 =1,982

Уточняем электрические и энергетические параметры трансформатора.

Определим действующее значение тока в первичной обмотке трансформатора, используя данные таблицы 1:

I1 = 0,45*Id / kтр. = 0,45*100 / 1,982 = 22,704 A.

Габаритная мощность первичных обмоток трансформатора:

S1 = 1,27*Рd = 12700 BA.

Габаритная мощность вторичных обмоток трансформатора:

S2 = 1,56*Pd = 15600 ВА;

Полная габаритная мощность трансформатора

SТР=(S1+S2)/2=(12700+15600)/2=14150 ВА.

Эта величина близка к определенной ранее по коэффициенту схемы (см. таблицу 1), поэтому оставляем выбранный силовой трансформатор для работы в данном преобразователе.

Уточняем величину активного сопротивления обмоток – Rтр и реактивного сопротивления рассеяния Xs, приведенных к вентильной стороне силового трансформатора

.

Итак: