- •1 Билет.
- •4 Билет
- •Магнитное поле в веществе
- •5 Билет
- •Вывод основного уравнения мкт
- •Закон Био́—Савара—Лапла́са Для тока текущего по контуру (тонкому проводнику)
- •Для распределенных токов
- •Следствия
- •6 Билет Распределение по вектору скорости
- •Распределение по проекции скорости
- •Распределение по модулю скоростей
- •[Править]в магнитостатике
- •[Править]в общем случае
- •Формула момента рычага
- •[Править]Сила под углом
- •[Править]Статическое равновесие
- •[Править]Момент силы как функция от времени
- •Движение заряженных частиц в магнитном поле
- •Законы — начала термодинамики
4 Билет
В основе молекулярно-кинетической теориистроения вещества лежат три положения:
Все тела состоят из частиц (атомов, молекул, ионов и др.);
Частицы непрерывно хаотически движутся;
Частицы взаимодействуют друг с другом.
Магнитное поле в веществе
Экспериментальные исследования показали, что все вещества в большей или меньшей степени обладают магнитными свойствами. Если два витка с токами поместить в какую-либо среду, то сила магнитного взаимодействия между токами изменяется. Этот опыт показывает, что индукция магнитного поля, создаваемого электрическими токами в веществе, отличается от индукции магнитного поля, создаваемого теми же токами в вакууме.
Физическая
величина, показывающая, во сколько
раз индукция
магнитного
поля в однородной среде отличается
по модулю от индукции
магнитного
поля в вакууме, называется магнитной
проницаемостью:
|
Магнитные свойства веществ определяются магнитными свойствами атомов или элементарных частиц (электронов, протонов и нейтронов), входящих в состав атомов. В настоящее время установлено, что магнитные свойства протонов и нейтронов почти в 1000 раз слабее магнитных свойств электронов. Поэтому магнитные свойства веществ в основном определяются электронами, входящими в состав атомов.
Одним из важнейших свойств электрона является наличие у него не только электрического, но и собственного магнитного поля. Собственное магнитное поле электрона называют спиновым (spin – вращение). Электрон создает магнитное поле также и за счет орбитального движения вокруг ядра, которое можно уподобить круговому микротоку. Спиновые поля электронов и магнитные поля, обусловленные их орбитальными движениями, и определяют широкий спектр магнитных свойств веществ.
Вещества крайне разнообразны по своим магнитным свойствам. У большинства веществ эти свойства выражены слабо. Слабо-магнитные вещества делятся на две большие группы – парамагнетики и диамагнетики. Они отличаются тем, что при внесении во внешнее магнитное поле парамагнитные образцы намагничиваются так, что их собственное магнитное поле оказывается направленным по внешнему полю, а диамагнитные образцы намагничиваются против внешнего поля. Поэтому у парамагнетиковμ > 1, а у диамагнетиков μ < 1. Отличие μ от единицы у пара- и диамагнетиков чрезвычайно мало. Например, у алюминия, который относится к парамагнетикам,μ – 1 ≈ 2,1·10–5, у хлористого железа (FeCl3) μ – 1 ≈ 2,5·10–3. К парамагнетикам относятся также платина, воздух и многие другие вещества. К диамагнетикам относятся медь(μ – 1 ≈ –3·10–6), вода (μ – 1 ≈ –9·10–6), висмут (μ – 1 ≈ –1,7·10–3) и другие вещества. Образцы из пара- и диамагнетика, помещенные в неоднородное магнитное поле между полюсами электромагнита, ведут себя по-разному – парамагнетики втягиваются в область сильного поля, диамагнетики – выталкиваются (рис. 1.19.1).
|
Рисунок 1.19.1. Парамагнетик (1) и диамагнетик (2) в неоднородном магнитном поле |
Пара- и диамагнетизм объясняется поведением электронных орбит во внешнем магнитном поле. У атомов диамагнитных веществ в отсутствие внешнего поля собственные магнитные поля электронов и поля, создаваемые их орбитальным движением, полностью скомпенсированы. Возникновение диамагнетизма связано с действием силы Лоренца на электронные орбиты. Под действием этой силы изменяется характер орбитального движения электронов и нарушается компенсация магнитных полей. Возникающее при этом собственное магнитное поле атома оказывается направленным против направления индукции внешнего поля.
В атомах парамагнитных веществ магнитные поля электронов скомпенсированы не полностью, и атом оказывается подобным маленькому круговому току. В отсутствие внешнего поля эти круговые микротоки ориентированы произвольно, так что суммарная магнитная индукция равна нулю. Внешнее магнитное поле оказывает ориентирующее действие – микротоки стремятся сориентироваться так, чтобы их собственные магнитные поля оказались направленными по направлению индукции внешнего поля. Из-за теплового движения атомов ориентация микротоков никогда не бывает полной. При усилении внешнего поля ориентационный эффект возрастает, так что индукция собственного магнитного поля парамагнитного образца растет прямо пропорционально индукции внешнего магнитного поля. Полная индукция магнитного поля в образце складывается из индукции внешнего магнитного поля и индукции собственного магнитного поля, возникшего в процессе намагничивания. Механизм намагничивания парамагнетиков очень похож на механизм поляризации полярных диэлектриков. Диамагнетизм не имеет аналога среди электрических свойств вещества.
Следует отметить, что диамагнитными свойствами обладают атомы любых веществ. Однако во многих случаях диамагнетизм атомов маскируется более сильным парамагнитным эффектом. Явление диамагнетизма было открыто М. Фарадеем в 1845 г.
Вещества, способные сильно намагничиваться в магнитном поле, называются ферромагнетиками. Магнитная проницаемость ферромагнетиков по порядку величины лежит в пределах 102–105. Например, у стали μ ≈ 8000, у сплава железа с никелем магнитная проницаемость достигает значений 250000.
К рассматриваемой группе относятся четыре химических элемента: железо, никель, кобальт, гадолиний. Из них наибольшей магнитной проницаемостью обладает железо. Поэтому вся эта группа получила название ферромагнетиков.
Ферромагнетиками могут быть различные сплавы, содержащие ферромагнитные элементы. Широкое применение в технике получили керамические ферромагнитные материалы – ферриты.
Для каждого ферромагнетика существует определенная температура (так называемая температура или точка Кюри), выше которой ферромагнитные свойства исчезают, и вещество становится парамагнетиком. У железа, например, температура Кюри равна 770 °C, у кобальта 1130 °C, у никеля 360 °C.
Ферромагнитные материалы делятся на две большие группы – на магнито-мягкие и магнито-жесткие материалы. Магнито-мягкие ферромагнитные материалы почти полностью размагничиваются, когда внешнее магнитное поле становится равным нулю. К магнито-мягким материалам относится, например, чистое железо, электротехническая сталь и некоторые сплавы. Эти материалы применяются в приборах переменного тока, в которых происходит непрерывное перемагничивание, то есть изменение направления магнитного поля (трансформаторы, электродвигатели и т. п.).
Магнито-жесткие материалы в значительной мере сохраняют свою намагниченность и после удаления их из магнитного поля. Примерами магнито-жестких материалов могут служить углеродистая сталь и ряд специальных сплавов. Магнито-жесткие метериалы используются в основном для изготовления постоянных магнитов.
Магнитная проницаемость μ ферромагнетиков не является постоянной величиной; она сильно зависит от индукции B0 внешнего поля. Типичная зависимость μ (B0) приведена на рис. 1.19.2. В таблицах обычно приводятся значения максимальной магнитной проницаемости.
|
Рисунок 1.19.2. Типичная зависимость магнитной проницаемости ферромагнетика от индукции внешнего магнитного поля |
Непостоянство магнитной проницаемости приводит к сложной нелинейной зависимости индукции B магнитного поля в ферромагнетике от индукции B0 внешнего магнитного поля. Характерной особенностью процесса намагничивания ферромагнетиков является так называетмый гистерезис, то есть зависимость намагничивания от предыстории образца. Кривая намагничивания B (B0) ферромагнитного образца представляет собой петлю сложной формы, которая называется петлей гистерезиса (рис. 1.19.3).
|
Рисунок 1.19.3. Петля гистерезиса ферромагнетика. Стрелками указано направление процессов намагничивания и размагничивания ферромагнитного образца при изменении индукции B0 внешнего магнитного поля |
Из
рис. 1.19.3 видно, что при
наступает
магнитное насыщение – намагниченность
образца достигает максимального
значения.
Если теперь уменьшать магнитную индукцию B0 внешнего поля и довести ее вновь до нулевого значения, то ферромагнетик сохранит остаточную намагниченность – поле внутри образца будет равно Br. Остаточная намагниченность образцов позволяет создавать постоянные магниты. Для того, чтобы полностью размагнитить образец, необходимо, изменив знак внешнего поля, довести магнитную индукцию B0 до значения –B0c, которое принято называть коэрцитивной силой. Далее процесс перемагничивания может быть продолжен, как это указано стрелками на рис. 1.19.3.
У магнито-мягких материалов значения коэрцитивной силы B0c невелико – петля гистерезиса таких материалов достаточно узкая. Материалы с большим значением коэрцитивной силы, то есть имеющие широкую петлю гистерезиса, относятся к магнито-жестким.
Природа ферромагнетизма может быть до конца понята только на основе квантовых представлений. Качественно ферромагнетизм объясняется наличием собственных (спиновых) магнитных полей у электронов. В кристаллах ферромагнитных материалов возникают условия, при которых, вследствие сильного взаимодействия спиновых магнитных полей соседних электронов, энергетически выгодной становится их параллельная ориентация. В результате такого взаимодействия внутри кристалла ферромагнетика возникают самопроизвольно намагниченные области размером порядка 10–2–10–4 см. Эти области называются доменами. Каждый домен представляет из себя небольшой постоянный магнит.
В отсутствие внешнего магнитного поля направления векторов индукции магнитных полей в различных доменах ориентированы в большом кристалле хаотически. Такой кристалл в среднем оказывается ненамагниченным. При наложении внешнего магнитного поля происходит смещение границ доменов так, что объем доменов, ориентированных по внешнему полю, увеличивается. С увеличением индукции внешнего поля возрастает магнитная индукция намагниченного вещества. В очень сильном внешнем поле домены, в которых собственное магнитное поле совпадает по направлению с внешним полем, поглощают все остальные домены, и наступает магнитное насыщение. Рис. 1.19.4 может служить качественной иллюстрацией процесса намагничивания ферромагнитного образца.
|
Рисунок 1.19.4. Намагничивание ферромагнитного образца. (1) B0 = 0; (2) B0 = B01; (3) B0 = B02 > B01 |
Гипотеза Ампера
Известно, что постоянные магниты могут быть изготовлены лишь из немногих веществ, но все вещества, помещённые в магнитное поле, намагничиваются в той или иной мере, то есть сами поддерживают (парамагнетики), ослабляют (диамагнетики) или даже усиливают (ферромагнетики) внешнее магнитное поле. Именно по этой причине вектор магнитной индукции в веществе отличается от вектора магнитной индукции в вакууме.
ДИАМАГНЕТИКИ |
ПАРАМАГНЕТИКИ |
ФЕРРОМАГНЕТИКИ |
Ослабляют магнитное поле катушки с током |
Почти не изменяют магнитное поле катушки с током |
Усиливают магнитное поле катушки с током |
вода (0,999991) |
воздух (1,00000038) |
кобальт (175 раз) |
медь (0,9999897) |
платина (1,000250) |
никель (1 120 раз) |
стекло (0,9999897) |
титан (1,000180) |
сталь трансформаторная (8000 раз) |
Причина, вследствие которой тела обладают магнитными свойствами, была найдена французским учёным Ампером. Наблюдая поведение магнитной стрелки вблизи проводника с током в опыте Эрстеда, Ампер предположил, что магнетизм Земли вызван токами, текущими внутри земного шара. То есть, магнитные свойства вещества можно объяснить токами, циркулирующими внутри него. Далее Ампер выдвинул более общее заключение - магнитные свойства любого тела определяются замкнутыми электрическими токами внутри него.
Согласно гипотезе Ампера, внутри молекул и атомов циркулируют элементарные электрические токи. Сейчас мы уже знаем, что эти токи представляют собой движение электронов по орбитам в атоме. Если плоскости, в которых циркулируют эти токи, расположены беспорядочно по отношению друг к другу вследствие теплового движения молекул, составляющих тело, то их взаимодействия взаимно компенсируются и никаких магнитных свойств тело не обнаруживает. И наоборот: если плоскости, в которых вращаются электроны, параллельны друг другу и направления нормалей к этим плоскостям совпадают, то такие вещества усиливают внешнее магнитное поле.
Магнитная восприимчивость
Магнитная восприимчивость определяется отношением намагниченности единицы объёма вещества к напряжённости намагничивающего магнитного поля. По своему смыслу восприимчивость является величиной безразмерной.
Реальные объекты могут обладать как положительными, так и отрицательными магнитными восприимчивостями. Примером веществ с отрицательной восприимчивостью могут служитьдиамагнетики — их намагниченность по направлению противоположна приложенному магнитному полю. Положительной восприимчивостью обладают, например, парамагнетики и ферромагнетики.
Магнитная восприимчивость диамагнетиков и парамагнетиков мала и составляет величину порядка 10−4 — 10−6, при этом она практически не зависит от напряжённости приложенного магнитного поля. Заметные отклонения наблюдаются только в области сильных полей или низких температур.
В
ферромагнетиках магнитная восприимчивость
может достигать весьма больших значений,
составляя величины от нескольких
десятков до многих тысяч единиц, причём
наблюдается её сильная зависимость от
напряжённости приложенного поля. Поэтому
для удобства используют также дифференциальную
магнитную восприимчивость,
равную производной
намагниченности единицы объёма вещества
по напряжённости поля. В отсутствие
поля магнитная восприимчивость
ферромагнетиков отлична от нуля и имеет
некоторое положительное значение
,
называемое начальной магнитной
восприимчивостью. С увеличением
напряжённости поля величина восприимчивости
растёт, пока не достигает некоего
максимума
,
после чего вновь уменьшается. В области
очень сильных полей магнитная
восприимчивость ферромагнетиков (при
температурах, не очень близких к точке
Кюри)
падает практически до нуля, сравниваясь
с величиной восприимчивости обычных
парамагнетиков (эта область параметров
называется областью парапроцесса). Вид
зависимости магнитной восприимчивости
ферромагнетика от напряжённости
намагничивающего поля носит название кривой
Столетова и
обусловлен сложными механизмами
намагничивания ферромагнетиков.
Намагниченность
Намагни́ченность — векторная физическая величина, характеризующая магнитное состояние макроскопического физического тела. Обозначается обычноМ или J. Определяется как магнитный момент единицы объёма вещества:
Здесь, M — вектор намагниченности; m - вектор магнитного момента; V — объём.
В общем случае (случае неоднородной, по тем или иным причинам, среды) намагниченность выражается как
и является функцией координат.
Связь между M и напряженностью магнитного поля H в диамагнитных и парамагнитных материалах, обычно линейна (по крайней мере, при не слишком больших величинах намагничивающего поля):
где χm называют магнитной восприимчивостью. В ферромагнитных материалах нет однозначной связи между M и H из-за магнитного гистерезиса.
Магнитная индукция определяется через намагниченность как:
(в
системе СИ)
(в
системе СГС)
Магнитная
проницаемость — физическая
величина,
коэффициент (зависящий от свойств
среды), характеризующий связь
между магнитной
индукцией
и напряжённостью
магнитного поля
в
веществе. Для разных сред этот коэффициент
различен, поэтому говорят о магнитной
проницаемости конкретной среды
(подразумевая ее состав, состояние,
температуру и т. д.).
Впервые встречается в работе Вернера Сименса «Beiträge zur Theorie des Elektromagnetismus» («Вклад в теорию электромагнетизма») в 1881 году[1].
Обычно
обозначается греческой буквой
.
Может быть как скаляром (у изотропных
веществ),
так и тензором (у анизотропных).
В общем связь соотношение между магнитной индукцией и напряженностью магнитного поля через магнитную проницаемость вводится как
и в общем случае здесь следует понимать как тензор, что в компонентной записи соответствует[2]:
Для изотропных веществ соотношение:
можно понимать в смысле умножение вектора на скаляр (магнитная проницаемость сводится в этом случае к скаляру).
В системе СГС магнитная проницаемость — безразмерная величина, в системе СИ вводят как размерную (абсолютную), так и безразмерную (относительную) магнитные проницаемости:
,
где
—
относительная, а
—
абсолютная проницаемость,
— магнитная
постоянная (магнитная
проницаемость вакуума).
Нередко обозначение используется не так, как здесь, а именно для относительной магнитной проницаемости (при этом совпадает с таковым в СГС).
Размерность абсолютной магнитной проницаемости в СИ такая же, как размерность магнитной постоянной, то есть Гн/м или Н/А2.
Магнитная проницаемость связана с магнитной восприимчивостью χ следующим образом: в СИ:
в Гауссовой системе:
Вообще говоря магнитная проницаемость зависит как от свойств вещества, так и от величины и направления магнитного поля (а кроме того от температуры[3], давления итд).
Также зависит от характера изменения поля со временем, в частности, для синусоидального колебания поля — зависит от частоты этого колебания (в этом случае вводят комплексную магнитную проницаемость чтобы описать влияние среды на сдвиг фазы 'B' по отношению к 'H'). При достаточно низких частотах (небольшой быстроте изменения поля) ее можно обычно считать в этом смысле константой.
Магнитная проницаемость сильно зависит от величины поля для нелинейных сред (типичный пример — ферромагнетики, для которых характерен гистерезис). Для таких сред магнитная проницаемость как независящее от поля число может указываться приближенно, в рамках линеаризации[4].
Для парамагнетиков и диамагнетиков линейное приближение достаточно хорошо для широкого диапазона величин поля.
Подавляющее
большинство веществ относятся либо к
классу диамагнетиков (
),
либо к классу парамагнетиков (
).
Но ряд веществ — (ферромагнетики),
например железо,
обладают более выраженными магнитными
свойствами.
У ферромагнетиков вследствие гистерезиса, понятие магнитной проницаемости, строго говоря, неприменимо. Однако в определенном диапазоне изменения намагничивающего поля (чтобы можно было пренебречь остаточной намагниченностью, но до насыщения) можно в лучшем или худшем приближении всё же представить эту зависимость как линейную (а для магнитомягких материалов ограничение снизу может быть и не слишком практически существенно), и в этом смысле величина магнитной проницаемости бывает измерена и для них.
Магнитная проницаемость сверхпроводников равна нулю.
Абсолютная
магнитная проницаемость воздуха
приблизительно равна Магнитной
проницаемости вакуума и в технических
расчетах принимается равной[5]
Гн/м
Магни́тный моме́нт, магни́тный дипо́льный моме́нт — основная величина, характеризующая магнитные свойства вещества. Источником магнетизма, согласно классической теории электромагнитных явлений, являются электрические макро- и микротоки. Элементарным источником магнетизма считают замкнутый ток. Магнитным моментом обладают элементарные частицы, атомные ядра, электронные оболочки атомов и молекул. Магнитный момент элементарных частиц (электронов, протонов, нейтронов и других), как показала квантовая механика, обусловлен существованием у них собственного механического момента — спина.
Магнитный момент измеряется в А⋅м2 или Дж/Тл (СИ), либо эрг/Гс (СГС), 1 эрг/Гс = 10-3 Дж/Тл. Специфической единицей элементарного магнитного момента является магнетон Бора.
В случае плоского контура с электрическим током магнитный момент вычисляется как
,
где
— сила
тока в
контуре,
—
площадь контура,
—
единичный вектор нормали к плоскости
контура. Направление магнитного момента
обычно находится по правилу
буравчика:
если вращать ручку буравчика в направлении
тока, то направление магнитного момента
будет совпадать с направлением
поступательного движения буравчика.
Для произвольного замкнутого контура магнитный момент находится из:
,
где
— радиус-вектор,
проведенный из начала координат до
элемента длины контура
В общем случае произвольного распределения токов в среде:
,
где
— плотность
тока в
элементе объёма
.
