
- •Введение
- •Глава 1. Основы сопротивления материалов
- •Предмет «Сопротивление материалов»
- •Объект курса
- •Внешние силы
- •Основные понятия и гипотезы (допущения)
- •Внутренние силы и их определение. Метод сечений
- •Эпюры внутренних усилий
- •Понятие о напряжении и напряженном состоянии
- •Понятие о деформации тела и о деформации физических точек
- •Глава 2. Растяжение, сжатие бруса
- •Напряжения и деформации при растяжении и сжатии. Закон Гука
- •Потенциальная энергия деформации
- •Анализ напряженного состояния при растяжении (сжатии)
- •Статически определимые и статически неопределимые задачи при растяжении и сжатии
- •Диаграмма растяжения
- •2.6. Диаграмма сжатия
- •2.7. Расчеты на прочность при растяжении (сжатии)
- •Глава 3. Сдвиг и кручение стержней
- •3.1. Понятие о чистом сдвиге. Напряжения и деформации при сдвиге. Закон Гука
- •Практический расчет соединений работающих на сдвиг
- •Кручение бруса с круглым поперечным сечением. Напряжение в брусе круглого поперечного сечения. Условия прочности. Определение угла закручивания. Условие прочности
- •Кручение бруса прямоугольного поперечного сечения
- •Потенциальная энергия бруса при кручении
- •Кручение бруса круглого поперечного сечения за пределом упругости
- •Глава 4. Геометрические характеристики плоских сечений
- •Основные понятия
- •Статические моменты сечения
- •Моменты инерции сечения. Зависимость между моментами инерции при параллельном переносе осей
- •Зависимость между моментами инерции сечения при повороте осей. Главные оси и главные моменты инерции
- •Глава 5. Изгиб
- •5.1. Основные понятия
- •5.2. Дифференциальные зависимости между и
- •5.3. Напряжения в брусе при чистом изгибе
- •5.4. Напряжения при поперечном изгибе
- •5.5. Чистый косой изгиб
- •Внецентренное растяжение и сжатие
- •Глава 6. Перемещения при изгибе
- •6.1. Метод Мора для определения перемещений
- •6.2. Способ Верещагина
- •Глава 7. Статически неопределимые стержневые системы
- •7.1. Введение
- •7.2. Классификация стержневых систем. Системы статической неопределимости
- •7.3. Метод сил. Выбор основной системы
- •7.4. Канонические уравнения метода сил
- •7.5. Использование свойств симметрии при раскрытии статической неопределенности
- •7.6. Определение перемещений в статически неопределимых системах
- •Глава 8. Устойчивость равновесия деформируемых систем
- •8.1. Основные понятия
- •8.2. Дифференциальное уравнение стержня потерявшего устойчивость
- •8.3. Задача Эйлера об устойчивости шарнирно опертого стержня сжатого силой р
- •8.4. Зависимость критической силы от условий закрепленного стержня
- •8.5. Пределы применимости формулы Эйлера
- •8.6. Практический метод расчета стержней на устойчивость
- •Глава 9. Элементы теории напряженного и деформированного состояния
- •9.1. Основные понятия
- •9.2. Напряжения на наклонных площадках
- •9.3. Главные оси и главные напряжения
- •9.4. Круговая диаграмма напряженного состояния
- •9.5. Экстремальные касательные напряжения
- •9.6. Октаэдрические площадки. Октаэдрические напряжения
- •9.7. Деформированное состояние
- •9.8. Формулы обобщенного закона Гука
- •Глава 10. Критерии пластичности и разрушения
- •10.1. Постановка вопроса
- •10.2. Условия пластичности и разрушения
- •Гипотеза пластичности Треска—Сен—Венана
- •Гипотеза пластичности Хубера—Мизеса
- •10.3. Теория пластичности и разрушения Мора
- •Глава 11. Прочность материалов при циклически изменяющихся напряжениях
- •11.1. Понятие об усталостной прочности
- •11.2. Виды циклов напряжений
- •11.3. Предел выносливости
- •11.4. Диаграмма предельных амплитуд
- •11.5. Факторы, влияющие на усталостную прочность
- •11.5.1 Концентрация напряжений
- •11.5.2 Масштабный эффект
- •11.5.3 Влияние качества обработки поверхности
- •11.6. Расчет на прочность при переменных напряжениях
Глава 6. Перемещения при изгибе
6.1. Метод Мора для определения перемещений
Если материальная точка находится в равновесии под действием некоторой системы сил (рис. 6.1), то сумма работ этих сил на любом возможном перемещении равна нулю.
.
(6.1)
Рис. 6.1
Любое упругое тело можно рассматривать как систему материальных точек, находящихся в равновесии под действием внешних и внутренних сил упругости. Следовательно, работа всех внешних и внутренних сил упругости на любом возможном перемещении для упругого тела равна нулю.
Пусть под
воздействием внешних сил
в балке возникли действительные
перемещения
,
и под действием внешних и внутренних
сил упругости оно находится в равновесии
(рис. 6.2,а). Назовем его действительным
состоянием (I
состояние). Представим себе II
состояние (фиктивное), в котором все
силы есть вариации сил действительного
состояния, тогда и перемещения в нем
будут вариациями перемещений первого
состояния (рис. 6.2,б). Составим работу
сил первого состояния на перемещениях
второго.
Рис. 6.2
,
(6.2)
где — работа внутренних сил. Тогда можно записать
.
(6.3)
Возьмем теперь два состояния упругой системы (рис. 6.3).
Рис. 6.3
Рассматривая перемещения точек состояния I (рис. 6.3,а) как возможные, составим на основании принципа Лагранжа работу II — состояния (рис. 6.3,б) на перемещениях I.
, (
—
связана со статическим приложением
силы)
или
.
(6.4)
Вычислим работу внутренних силовых факторов второго состояния на перемещениях первого. Для этого из I и II состояний вырежем участок бруса длиной (рис. 6.3).
Элементарная работа внутренних сил II состояния на перемещениях I, равна:
.
Деформации малого элемента определяются по известным формулам.
При растяжении:
.
При изгибе,
кручении:
,
,
.
При сдвиге:
.
Абсолютный сдвиг:
;
;
;
.
Т.к. касательные
силы распределены по сечениям неравномерно
то
,
где
—
поправочный коэффициент, учитывающий
неравномерное распределение касательных
напряжений (рис. 6.4).
Рис. 6.4
Подставляя
перемещения в выражения для
,
получим:
Для всей системы
Подставляя в уравнение Лагранжа (6.3), получим
(6.5)
В правой части этого выражения стоят интегралы Мора.
Если определяются перемещения в пространственных системах, то первыми тремя интегралами пренебрегают.
(6.6)
Если определять перемещения в плоских балках, рамах, то
(6.7)
Если определять перемещения в фермах, то
(6.8)