
- •Вид используемого электромагнитного излучения
- •Абсорбционные спектроскопические методы анализа Основной закон поглощения электромагнитного излучения
- •Практическое применение
- •Молекулярная абсорбционная спектроскопия в уф- и видимой области
- •Фотометрические реакции
- •74 Продолжение Дифференциальная (разностная) фотометрия
- •Производная спектрофотометрия
- •Процессы, приводящие к появлению аналитического сигнала
- •20.5.2. Общая характеристика ик-спектров
- •Измерение аналитического сигнала
- •Практическое применение
- •Процессы, приводящие к появлению аналитического сигнала
- •Измерение аналитического сигнала
- •Практическое применение
- •Природа вещества
- •Глава 22
- •22.1. Общая характеристика
- •22.2. Классификация хроматографических методов
- •22.3. Хроматографические параметры
- •Хроматографические характеристики, используемые для идентификации веществ (характеристики удерживания)
- •Хроматографические характеристики, используемые для количественного определения веществ
- •22.4. Теории хроматографического разделения
- •Глава 23
- •23.1. Общая характеристика
- •23.2. Устройство газового хроматографа
- •Хроматографическая колонка
- •Детекторы
- •23.3. Особенности газотвёрдофазной хроматографии
- •23.4. Особенности газожидкостной хроматографии
- •23.5. Индексы удерживания Ковача
- •23.6. Практическое применение
- •Глава 24
- •24.1. Общая характеристика
- •24.2. Плоскостная хроматография
- •24.2.1. Методика получения плоскостной хроматограммы
- •24.2.2. Анализ плоскостной хроматограммы
- •24.2.3. Практическое применение
- •24.3. Колоночная жидкостная хроматография
- •24.3.1. Устройство жидкостного хроматографа
- •24.3.2. Практическое применение
- •24.4. Характеристика отдельных видов жидкостной хроматографии
- •24.4.1. Ионообменная хроматография
- •Неподвижные и подвижные фазы
- •24.4.2. Эксклюзионная хроматография
- •Глава 25
- •25.1. Основные понятия, связанные с электрохимическими методами анализа
- •25.2. Классификация электрохимических методов анализа
- •В табл. 25.1 приведена классификация основных электрохимических методов анализа в зависимости от измеряемого параметра.
- •25.3. Кондуктометрия
- •25.3.1. Теоретические основы и классификация
- •25.3.2. Измерение аналитического сигнала
- •25.3.4. Практическое применение
- •25.3.5. Понятие о высокочастотной кондуктометрии
- •Глава 26
- •26.1. Потенциометрический метод анализа
- •26.1.1. Общая характеристика и классификация
- •26.1.2. Условия измерения аналитического сигнала
- •26.1.3. Индикаторные электроды
- •26.1.4. Прямая потенциометрия
- •26.1.5. Потенциометрическое титрование
- •26.2. Кулонометрический метод анализа
- •26.2.1. Общая характеристика и классификация
- •26.2.2. Прямая кулонометрия
- •1) Рабочий электрод;
- •2) Электрод сравнения;
- •3) Вспомогательный электрод
- •26.2.3. Кулонометрическое титрование
- •Глава 27
- •27.1. Принцип измерения аналитического сигнала.
- •27.2. Вольтамперограмма
- •27.3. Некоторые современные разновидности вольтамперометрии
- •27.4. Практическое применение вольтамперометрии. Амперометрическое титрование
24.2.3. Практическое применение
Плоскостная хроматография используется, главным образом, для обнаружения и идентификации веществ.
С целью количественного определения веществ тонкослойную и бумажную хроматографию применяют значительно реже.
24.3. Колоночная жидкостная хроматография
В колоночной жидкостной хроматографии сорбент находится в стеклянной или металлической трубке (колонке).
В классическом варианте колоночной хроматографии используются сорбенты с диаметром частиц более 100 мкм. Колонка может иметь длину до нескольких метров. Элюент продвигается по колонке под действием силы тяжести.
В высокоэффективной жидкостной хроматографии (ВЭЖХ) используются сорбенты, обладающие особыми свойствами (однородность частиц, ненабухаемость и т.д.). Диаметр частиц этих сорбентов не превышает 50 мкм. Часто в ВЭЖХ применяют сорбенты с различными привитыми группами (см. рис. 24.1). Скорость движения подвижной фазы и эффективность разделения в ВЭЖХ значительно выше, чем в классическом варианте хроматографии.
24.3.1. Устройство жидкостного хроматографа
Основные узлы жидкостного хроматографа показаны на рис. 24.5.
Рис. 24.5. Принципиальная схема жидкостного хроматографа
Подвижная фаза подаётся в колонку с помощью насоса. Блок подачи элюента может включать в себя также систему дегазации, устройство для градиентного элюирования, измерители давления. До попадания в насос подвижная фаза должна быть профильтрована и освобождена от растворённых в ней газов (“дегазирована”), так как пузырьки газа при попадании в колонку приводят к снижению её эффективности, а при попадании в детектор вызывают беспорядочные колебания нулевой линии.
Ввод пробы в жидкостный хроматограф может проводиться с помощью петлевого дозатора, микрошприца (роль шприца может выполнять сам насос) и др.
Хроматографические колонки в ВЭЖХ, в отличие от газохроматографических колонок, прямые. Они имеют длину 10 - 30 см и внутренний диаметр 4 - 6 мм, а в микроколоночных хроматографах, соответственно, 5 - 7 см и 1-2 мм. Корпус колонки представляет собой цилиндрическую трубку, изготовленную из стекла, нержавеющей стали или полимерного материала. На верхнем и нижнем концах колонки расположены фильтры, представляющие собой диски из пористой нержавеющей стали. Назначение фильтров – удерживание сорбента в колонке и задержка механических примесей, которые могут находиться в подвижной фазе.
В табл. 24.3 перечислены детекторы, наиболее часто используемые в ВЭЖХ.
Табл. 24.3
Характеристика некоторых детекторов, используемых в
жидкостных хроматографах
Детектор |
Измеряемый сигнал |
Определяемые вещества |
дифференциальный рефрактометр |
разность показателей преломления элюата и элюента |
универсальный |
УФ-детектор с фиксированной длиной волны (254 нм) |
разность между поглощением элюата и элюента при 254 нм |
вещества, поглощающие электромагнитное излучение с длиной волны 254 нм |
спектрофотометрический
|
разность между поглощением элюата и элюента при выбранной длине волны |
вещества, поглощающие излучение с выбранной длиной волны |
флуоресцентный
|
интенсивность испускаемого света |
вещества, обладающие флуоресценцией |
кондуктометрический
|
низкочастотная электропроводность элюата |
ионы |
потенциометрический
|
разность потенциалов ионо-селективного электрода и электрода сравнения |
ионы |
вольтамперометрический
|
сила тока при постоянном потенциале электродов |
вещества, способные к электрохимическому окислению или восстановлению |