
- •Вид используемого электромагнитного излучения
- •Абсорбционные спектроскопические методы анализа Основной закон поглощения электромагнитного излучения
- •Практическое применение
- •Молекулярная абсорбционная спектроскопия в уф- и видимой области
- •Фотометрические реакции
- •74 Продолжение Дифференциальная (разностная) фотометрия
- •Производная спектрофотометрия
- •Процессы, приводящие к появлению аналитического сигнала
- •20.5.2. Общая характеристика ик-спектров
- •Измерение аналитического сигнала
- •Практическое применение
- •Процессы, приводящие к появлению аналитического сигнала
- •Измерение аналитического сигнала
- •Практическое применение
- •Природа вещества
- •Глава 22
- •22.1. Общая характеристика
- •22.2. Классификация хроматографических методов
- •22.3. Хроматографические параметры
- •Хроматографические характеристики, используемые для идентификации веществ (характеристики удерживания)
- •Хроматографические характеристики, используемые для количественного определения веществ
- •22.4. Теории хроматографического разделения
- •Глава 23
- •23.1. Общая характеристика
- •23.2. Устройство газового хроматографа
- •Хроматографическая колонка
- •Детекторы
- •23.3. Особенности газотвёрдофазной хроматографии
- •23.4. Особенности газожидкостной хроматографии
- •23.5. Индексы удерживания Ковача
- •23.6. Практическое применение
- •Глава 24
- •24.1. Общая характеристика
- •24.2. Плоскостная хроматография
- •24.2.1. Методика получения плоскостной хроматограммы
- •24.2.2. Анализ плоскостной хроматограммы
- •24.2.3. Практическое применение
- •24.3. Колоночная жидкостная хроматография
- •24.3.1. Устройство жидкостного хроматографа
- •24.3.2. Практическое применение
- •24.4. Характеристика отдельных видов жидкостной хроматографии
- •24.4.1. Ионообменная хроматография
- •Неподвижные и подвижные фазы
- •24.4.2. Эксклюзионная хроматография
- •Глава 25
- •25.1. Основные понятия, связанные с электрохимическими методами анализа
- •25.2. Классификация электрохимических методов анализа
- •В табл. 25.1 приведена классификация основных электрохимических методов анализа в зависимости от измеряемого параметра.
- •25.3. Кондуктометрия
- •25.3.1. Теоретические основы и классификация
- •25.3.2. Измерение аналитического сигнала
- •25.3.4. Практическое применение
- •25.3.5. Понятие о высокочастотной кондуктометрии
- •Глава 26
- •26.1. Потенциометрический метод анализа
- •26.1.1. Общая характеристика и классификация
- •26.1.2. Условия измерения аналитического сигнала
- •26.1.3. Индикаторные электроды
- •26.1.4. Прямая потенциометрия
- •26.1.5. Потенциометрическое титрование
- •26.2. Кулонометрический метод анализа
- •26.2.1. Общая характеристика и классификация
- •26.2.2. Прямая кулонометрия
- •1) Рабочий электрод;
- •2) Электрод сравнения;
- •3) Вспомогательный электрод
- •26.2.3. Кулонометрическое титрование
- •Глава 27
- •27.1. Принцип измерения аналитического сигнала.
- •27.2. Вольтамперограмма
- •27.3. Некоторые современные разновидности вольтамперометрии
- •27.4. Практическое применение вольтамперометрии. Амперометрическое титрование
23.6. Практическое применение
Газовую хроматографию используют для разделения, идентификации и количественного определения различных соединений, в том числе и лекарственных веществ, которые обладают достаточной летучестью (перегоняются без разложения в интервале температур до 400 С). Методом ГХ можно определять и малолетучие вещества, если известен способ их переведения в летучие производные.
Газовая хроматография может быть использована для определения веществ, разрушающихся при нагревании, если процесс термического разрушения вещества хорошо воспроизводим.
Глава 24
24.1. Общая характеристика
Жидкостная хроматография - группа хроматографических методов, в которых подвижной фазой является жидкость.
В качестве сорбентов в жидкостной хроматографии применяют:
К неполярным относят также сорбенты с привитыми неполярными группами, например, химически модифицированные кремнезёмы с привитыми алкильными группами, содержащими от 2 до 18 углеродных атомов (рис. 24.1).
В качестве подвижной фазы в жидкостной хроматографии используют воду, водные растворы различных веществ (сильные кислоты, кислотно-основные буферы и т.д.), органические растворители (спирты, ацетонитрил, тетрагидрофуран, диоксан, диэтиловый эфир, алканы и т.д.), а также водно-органические смеси.
Рис. 24.1. Кремнезём с привитыми октадецильными группами
24.2. Плоскостная хроматография
В плоскостной хроматографии подвижная фаза перемещается в плоском слое сорбента.
Как в БХ, так и в ТСХ разделение может быть обусловлено различными механизмами, например, адсорбционным, распределительным, ионообменным, ион-парным, адсорбционно-комплексообразовательным.
Бумажная хроматография имеет ряд существенных недостатков и поэтому в настоящее время используется сравнительно редко:
процесс разделения зависит от состава и свойств бумаги;
содержание воды в порах бумаги может изменяться в зависимости от условий хранения;
очень низкая скорость хроматографирования (процесс получения хроматограммы может занимать нескольких суток),
низкая воспроизводимость результатов.
В тонкослойной хроматографии обычно используют хроматографические пластины заводского изготовления с закреплённым слоем сорбента. Основа пластинки может быть изготовлена из алюминиевой фольги, полимера (например, полиэтиленгликольтерефталата), стекла. Для удерживания слоя сорбента на подложке применяется гипс, крахмал, силиказоль и др. Толщина слоя сорбента может быть различной (0,1 мм и более), но обязательно одинаковой в любом месте хроматографической пластинки.
В качестве сорбентов в ТСХ используют силикагель, кизельгур, оксид алюминия, целлюлозу и др. В ионообменных хроматографических пластинках адсорбентами являются различные ионообменники (см. далее). В качестве подвижной фазы применяют либо индивидуальные растворители, либо смеси веществ, взятых в определённом соотношении.
24.2.1. Методика получения плоскостной хроматограммы
Методика получения плоскостных хроматограмм включает в себя следующие этапы:
предварительный этап - подготовка сорбента и исследуемой пробы, подготовка подвижной фазы, насыщение хроматографической камеры;
нанесение исследуемой пробы на хроматографическую пластинку или бумагу;
хроматографирование;
высушивание хроматограммы;
обнаружение пятен (зон) разделённых компонентов пробы.
Нанесение исследуемого раствора на хроматографическую пластинку или бумагу проводят градуированным капилляром, микрошприцом или микропипеткой. Капля наносится касанием капилляра или иглы поверхности пластинки (но не надавливанием, так как при этом можно повредить слой сорбента!). Для предотвращения смывания веществ с пластинки нанесение пятен проводят на линии, находящейся на расстоянии 1-2 см от нижнего края пластинки. Оптимальное количество исследуемого вещества (объём раствора), наносимого на пластинку, обычно определяется экспериментально. Если наносимое количество вещества слишком мало, то его можно не заметить при последующем проявлении. Нанесение на пластинку слишком большого количества вещества приводит к перегрузке сорбента и, как следствие, размыванию пятна и уменьшению величины Rf (рис. 24.2).
После нанесения исследуемых веществ на хроматографическую пластинку или бумагу, последние помещают в хроматографическую камеру и проводят хроматографирование. Обычно процесс хроматографирования ведут до тех пор, пока растворитель не поднимется на расстояние 10 см от линии старта.
Рис.
24.2.
Изменение
положения и формы пятна при увеличении
количества вещества, нанесённого на
пластинку
Табл. 24.1.
Способы получения плоскостных хроматограмм
Способ |
Сущность способа |
восходящая хроматография
|
Фронт подвижной фазы перемещается снизу вверх под действием капиллярных сил. Для получения хроматограммы используется наиболее простое оборудование - в качестве хроматографической камеры можно использовать любую емкость с плоским дном и плотно закрывающейся крышкой, в которую свободно помещается хроматографическая пластинка. Наиболее часто используемый способ получения хроматограмм. |
нисходящая хроматография
|
Фронт подвижной фазы перемещается сверху вниз в основном под действием сил тяжести. Для получения нисходящей хроматограммы в верхней части хроматографической камеры крепится кювета с хроматографической системой, из которой с помощью фитиля на хроматографическую пластинку поступает растворитель. |
радиальная хроматография
|
Исследуемое вещество наносится в центр пластинки. Фронт подвижной фазы перемещается от центра к краю пластинки |
двухмерная хроматография
|
После получения хроматограммы проводится повторное разделение в направлении, перпендикулярном исходному, с использованием подвижной фазы другого состава. Часто используется в бумажной хроматографии, например, в фармакогнозии при изучении состава лекарственных растений. |
После завершения процесса хроматографирования пластинку извлекают из хроматографической камеры и сушат. Высушенная пластинка представляет собой хроматограмму исследуемых веществ.