
- •Вид используемого электромагнитного излучения
- •Абсорбционные спектроскопические методы анализа Основной закон поглощения электромагнитного излучения
- •Практическое применение
- •Молекулярная абсорбционная спектроскопия в уф- и видимой области
- •Фотометрические реакции
- •74 Продолжение Дифференциальная (разностная) фотометрия
- •Производная спектрофотометрия
- •Процессы, приводящие к появлению аналитического сигнала
- •20.5.2. Общая характеристика ик-спектров
- •Измерение аналитического сигнала
- •Практическое применение
- •Процессы, приводящие к появлению аналитического сигнала
- •Измерение аналитического сигнала
- •Практическое применение
- •Природа вещества
- •Глава 22
- •22.1. Общая характеристика
- •22.2. Классификация хроматографических методов
- •22.3. Хроматографические параметры
- •Хроматографические характеристики, используемые для идентификации веществ (характеристики удерживания)
- •Хроматографические характеристики, используемые для количественного определения веществ
- •22.4. Теории хроматографического разделения
- •Глава 23
- •23.1. Общая характеристика
- •23.2. Устройство газового хроматографа
- •Хроматографическая колонка
- •Детекторы
- •23.3. Особенности газотвёрдофазной хроматографии
- •23.4. Особенности газожидкостной хроматографии
- •23.5. Индексы удерживания Ковача
- •23.6. Практическое применение
- •Глава 24
- •24.1. Общая характеристика
- •24.2. Плоскостная хроматография
- •24.2.1. Методика получения плоскостной хроматограммы
- •24.2.2. Анализ плоскостной хроматограммы
- •24.2.3. Практическое применение
- •24.3. Колоночная жидкостная хроматография
- •24.3.1. Устройство жидкостного хроматографа
- •24.3.2. Практическое применение
- •24.4. Характеристика отдельных видов жидкостной хроматографии
- •24.4.1. Ионообменная хроматография
- •Неподвижные и подвижные фазы
- •24.4.2. Эксклюзионная хроматография
- •Глава 25
- •25.1. Основные понятия, связанные с электрохимическими методами анализа
- •25.2. Классификация электрохимических методов анализа
- •В табл. 25.1 приведена классификация основных электрохимических методов анализа в зависимости от измеряемого параметра.
- •25.3. Кондуктометрия
- •25.3.1. Теоретические основы и классификация
- •25.3.2. Измерение аналитического сигнала
- •25.3.4. Практическое применение
- •25.3.5. Понятие о высокочастотной кондуктометрии
- •Глава 26
- •26.1. Потенциометрический метод анализа
- •26.1.1. Общая характеристика и классификация
- •26.1.2. Условия измерения аналитического сигнала
- •26.1.3. Индикаторные электроды
- •26.1.4. Прямая потенциометрия
- •26.1.5. Потенциометрическое титрование
- •26.2. Кулонометрический метод анализа
- •26.2.1. Общая характеристика и классификация
- •26.2.2. Прямая кулонометрия
- •1) Рабочий электрод;
- •2) Электрод сравнения;
- •3) Вспомогательный электрод
- •26.2.3. Кулонометрическое титрование
- •Глава 27
- •27.1. Принцип измерения аналитического сигнала.
- •27.2. Вольтамперограмма
- •27.3. Некоторые современные разновидности вольтамперометрии
- •27.4. Практическое применение вольтамперометрии. Амперометрическое титрование
Глава 23
23.1. Общая характеристика
Газовая хроматография - группа хроматографических методов, в которых подвижная фаза газообразна (находится в состоянии газа или пара).
В зависимости от агрегатного состояния неподвижной фазы:
23.2. Устройство газового хроматографа
Газохроматографические определения проводятся с помощью прибора, называемого газовым хроматографом. Принципиальная схема такого прибора приведена на рис. 23.1.
Рис. 23.1. Принципиальная схема газового хроматографа
В ГАХ и ГЖХ используется один и тот же прибор. Различие между данными вариантами газовой хроматографии заключается лишь в содержимом хроматографической колонки.
Подвижная фаза (газ-носитель)
В качестве подвижной фазы в газовой хроматографии применяют азот, гелий, водород, аргон и другие вещества. Газ-носитель должен:
быть инертен по отношению к определяемым веществам и сорбенту;
иметь как можно меньшую вязкость;
обеспечивать высокую чувствительность детектора;
быть доступным, взрывобезопасным, достаточно чистым и т.д.
Газы-носители хранятся в стальных баллонах под давлением (до 150 атм). Газ отбирается из баллона с помощью редуктора (устройства, позволяющего отбирать газ из баллона при давлении намного меньшем, чем давление в баллоне). Система подготовки газа необходима для установки, стабилизации, очистки газовых потоков, а также измерения их скорости. Она включает в себя регулятор давления, регулятор расхода газа, фильтры для очистки газа и т.д.
Способы ввода пробы
Устройство для ввода пробы (дозатор) предназначено для ввода в колонку определённого количества анализируемой пробы. Для дозирования газообразных веществ применяют газовые краны-дозаторы. Если анализируемая проба является жидкостью, её вводят с помощью специального микрошприца в испаритель. Испаритель представляет собой металлический блок, нагреваемый до определённой температуры, имеющий канал для ввода и испарения жидкой пробы. С одной стороны канал закрыт пробкой из самоуплотняющейся термостойкой силиконовой резины, а с другой стороны к нему присоединена хроматографическая колонка. В канал подаётся поток предварительно нагретого газа-носителя. Проба, введённая в канал испарителя, быстро испаряется и переносится потоком газа-носителя в колонку. Температура испарителя обычно выбирается равной или на 30-50 С более высокой, чем температура кипения наиболее высококипящего компонента анализируемой смеси и, как правило, на 20-30 С превышает температуру колонки.
Хроматографическая колонка
В газовой хроматографии применяют колонки двух типов:
Капиллярные колонки обеспечивают более высокую эффективность хроматографического разделения, чем насадочные. Вариант газовой хроматографии, в котором используются капиллярные колонки, называется капиллярной газовой хроматографией.
Детекторы
Детектор представляет собой устройство, предназначенное для обнаружения и количественного определения компонентов анализируемой смеси, выходящих из колонки в потоке газа-носителя. Работа детектора основана на преобразовании в электрический сигнал изменений физических, химических или физико-химических свойств газового потока, выходящего из колонки.
Основными характеристиками хроматографических детекторов являются:
чувствительность,
предел обнаружения,
величина линейного динамического диапазона,
быстродействие,
селективность.
Для газовой хроматографии предложено более 50 различных детекторов. Однако обычно комплект современного универсального хроматографа включает в себя не более 4 - 6 детекторов. Основные характеристики некоторых детекторов, применяемых в газовой хроматографии, приведены в табл. 23.1.
Табл. 23.1
Характеристика некоторых газохроматографических детекторов
Детектор |
ПрО, г |
Линей-ность |
Область применения |
катарометр |
10-7 |
104 |
универсальный - любые вещества, отличающиеся по теплопроводности от газа-носителя |
пламенно-ионизационный |
10-12 |
107 |
селективный – вещества (органические), способные ионизироваться в водородном пламени |
электронного захвата |
510-14 |
102 |
селективный - вещества электрофильные в газовой среде: полигалогеносодержащие, полиароматические, серусодержащие, нитрилы и т.д. |
термоионный |
10-13 – 10-14 |
105 |
селективный - P-, N-содержащие и некоторые другие соединения |
масс-спектрометр |
10-12 |
105 -106 |
универсальный - исследование сложных смесей неизвестного состава; в режиме масс-фрагментографии - специфический |
Рис.
23.2.
Схема
катарометра
Если через обе ячейки катарометра протекает чистый газ-носитель, теплопроводность среды в них одинакова. Обе спирали имеют одинаковую температуру и одинаковое сопротивление. Если из хроматографической колонки выходит вещество, теплопроводность которого отличается от теплопроводности газа-носителя, то температура и сопротивление спирали, находящейся в измерительной ячейке, изменяются. Различие сопротивлений спиралей определяется с помощью моста Уитстона (рис. 23.3).
При использовании катарометра в хроматографе должны быть две колонки, через одну пропускают газовую смесь, содержащую разделяемые вещества, а через вторую - чистый газ-носитель
Рис. 23.3. Мост Уитстона для катарометра
При использовании катарометра газом-носителем должен быть гелий или водород, обладающие большой теплоёмкостью. Этим достигается высокая чувствительность определения, так как разность между теплопроводностью газа-носителя и любого другого соединения всегда оказывается большой.
Рис.
23.4.
Схема
пламенно-ионизационного детектора
1 - собирающий
электрод; 2 - горелка
Пламя чистого водорода практически не содержит ионов, поэтому фоновое сопротивление пространства между электродами очень велико, а сила тока очень мала. Если в пламя из колонки попадает органическое вещество, то оно ионизируется. Поскольку в пламени появляются носители электрического заряда, сопротивление межэлектродного пространства резко уменьшается, а сила тока возрастает.
Термоионный детектор внешне похож на пламенно-ионизационный. Он имеет кварцевую горелку, на конце которой находится таблетка из соли щелочного металла (например, CsBr). При нагревании эта соль испаряется и в газовой фазе устанавливается равновесие:
CsBr + H+ Cs+ + HBr
При попадании в пламя соединения, содержащего в составе молекулы атомы фосфора и некоторые другие гетероатомы, скорость образования ионов резко увеличивается и сила тока возрастает. Термоионный детектор наиболее чувствителен к фосфорсодержащим соединениям. В меньшей степени он реагирует на соединения азота, серы, галогенов (кроме фтора), мышьяка, олова.
Детектор электронного захвата представляет собой ионизационную камеру, в которой находится источник -излучения, например, 63Ni или титановая фольга, содержащая адсорбированный тритий (рис. 23.5). В качестве газа-носителя при работе с детектором электронного захвата применяют азот, гелий, аргон и другие газы, способные ионизироваться с освобождением электрона. Фоновый ток детектора обусловлен, в основном, электронами. Молекулы анализируемых веществ, обладающие большим сродством к электрону, при попадании в детектор захватывают электроны и превращаются в анионы. Число носителей заряда при этом не изменяется, но сила тока уменьшается, так как анионы обладают на несколько порядков меньшей подвижностью, чем свободные электроны. Кроме того, образовавшиеся анионы вступают во взаимодействие с катионами газа-носителя, что вносит дополнительный вклад в уменьшение силы тока.
Рис. 23.5. Схема детектора электронного захвата