
- •Глава 10
- •10.1. Структурные основы сокращения
- •10.1.1. Тонкая структура миофиламентов
- •10.2. Теория скольжения нитей
- •10.2.1. Кривая зависимости «длина–сила»
- •10.3. Функция поперечных мостиков и развитие силы
- •10.3.1. Химия активности поперечных мостиков
- •10.3.2. Активность поперечных мостиков и мышечное сокращение
- •10.4. Роль кальция в процессе сокращения
- •10.4.1. Активация поперечных мостиков
- •10.4.2. Инактивация поперечных мостиков и расслабление мышцы
- •10.5. Электромеханическое сопряжение
- •10.5.1. Мембранный потенциал и сокращение
- •10.5.2. Саркотубулярная система
- •10.5.3. Саркоплазматический ретикулум
- •10.5.4. Высвобождение кальция саркоплазматическим ретикулумом
- •10.5.5. Краткое описание процессов сокращения и расслабления
- •10.6. Механические свойства сокращающейся мышцы
- •10.6.1. Длина свойства саркомера и сократительные
- •10.6.2. Латентный период
- •10.6.3. Зависимость «сила–скорость»
- •10.6.4. Последовательные эластические компоненты
- •10.6.5. Активное состояние
- •10.6.6. Одиночное и тетаническое сокращение
- •10.6.7. Энергетика сокращения
- •10.7. Метаболические подтипы поперечнополосатых мышц
- •10.8. Нервная регуляция мышечного сокращения
- •10.8.1. Нейромоторная организация позвоночных
- •10.8.2. Нервно–мышечная организация членистоногих
- •10.8.3. Асинхронные летательные мышцы насекомых
- •10.9. Сердечная мышца
- •10.10. Гладкая мышца
- •10.11. Скелетно–мышечная механика
- •10.12. Резюме
10.5.5. Краткое описание процессов сокращения и расслабления
Процессы, контролирующие сокращение скелетной мышцы, изображены в общем виде на рис. 10–21. Приводим их перечень.
1. Поверхностная мембрана мышечного волокна деполяризуется под влиянием потенциала действия или (в некоторых мышцах) под влиянием синаптических потенциалов.
2. Потенциал действия поступает в глубь мышечного волокна по Т–трубочкам.
3. В ответ на деполяризацию Т–трубочек сигнал, который, вероятно, опосредуется молекулами ИФ3, распространяется от этих трубочек к концевым цистернам саркоплазматического ретикулума.
4. Этот химический посредник вызывает открытие кальциевых каналов в СР и высвобождение секвестированных там ионов кальция.
5. Концентрация свободного Cа2+ в миоплазме возрастает от значения 10–7 М и ниже (в покое) до приблизительно 10–6 М и более (в активном состоянии). Кальций соединяется с тропонином, вызывая в молекуле этого белка конформационные изменения.
6. Конформационные изменения молекулы тропомиозина устраняют пространственное препятствие для присоединения поперечных мостиков к актиновым филаментам.
7. Миозиновые поперечные мостики прикрепляются к актиновым филаментам и вступают в последовательное взаимодействие с их центрами, что вызывает вращение миозиновой головки относительно актиновых филаментов и натяжение мостикового шарнира.
8. Натяжение мостикового шарнира приводит к активному вхождению актиновых филаментов в А–диск. Саркомер слегка укорачивается.
9. Прежде чем произойдет следующий цикл движения миозинового поперечного мостика, АТР (связанная с АТРазным центром на миозиновой головке) гидролизуется и освобожденная при этом энергия запасается в виде конформационного изменения в молекуле миозина. Миозиновая головка отходит и затем вновь готова присоединиться к следующему центру, расположенному по длине актинового филамента, и повторить цикл, описанный в пп. 7 и 8. Во время одиночного сокращения каждый поперечный мостик по мере своего продвижения к Z–пластинке вдоль актинового филамента прикрепляется, подтягивается и отсоединяется множество раз.
10. Наконец, в результате активной работы СР уровень Cа2+ в саркоплазме снова понижается, и тропомиозин начинает препятствовать присоединению поперечных мостиков. Мышца остается расслабленной до тех пор, пока не произойдет следующая деполяризация мембраны.
Между структурой саркотубулярной системы и функцией мышцы существует интересная связь. Те мышцы, которые сокращаются и расслабляются очень быстро, имеют высокоразвитый СР и обширную сеть Т–трубочек. А те мышцы, сокращение и расслабление которых происходит медленно, соответственно имеют менее развитый СР. Различные скорости сокращения и расслабления, по–видимому, коррелируют с эффективностью СР в регуляции изменений концентрации кальция, которые в свою очередь запускают и останавливают сократительный механизм.
|
Рис. 10.21. Последовательность стадий сопряжения процессов возбуждения и сокращения. Потенциал действия распространяется по поверхности мембраны мышечного волокна (1) и спускается по Т–трубочке (2). Электрический сигнал доставляется с помощью химического посредника к боковым цистернам СР (3), которые вслед за этим высвобождают секвестированные в них ионы Ca2+ (4). Затем ингибирование актин–миозинового взаимодействия кальцием ослабевает в результате связывания металла с тропонином (5). Миозиновые поперечные мостики прикрепляются к актиновым филаментам, вызывая скольжение последних (6).
|