Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция и Метод.мат. ДМ и ОК. Разд. 2.doc
Скачиваний:
21
Добавлен:
15.11.2019
Размер:
3.08 Mб
Скачать

1.1.3. Получение расчетной зависимости для определения рабочих напряжений

С целью получения зависимости для технических расчетов зубчатых передач на контактную выносливость выразим все составляющие формулы Герца через исходные данные. Расчетная схема на рис. 2.10 иллюстрирует эти преобразования

а) Fn – сила взаимодействия зубьев (2.5-2.6)

(см. лекцию №6)

Fn = Ft/cosαw – колеса прямозубые,

Fn = Ft/cosαwcosβ – колеса косозубые.

Для определения окружной составляющей все исходные данные имеются. В соответствии с (2.1)

Ft= 2T1/d1 =2T2/d2.

Рис. 2.10. Расчетная схема для оценки рабочих контактных напряжений: а –геометрическая и силовая модель; б, в, г – распределение нагрузки по ширине зуба (б - при строгой параллельности осей вращения и образующих активных поверхностей зубьев; в,г – в передаче, изготовленной с реальной точностью)

б) l = l - суммарная длина линии контакта в зубчатых передачах, которая больше расчетной ширины зубчатых колес bw = b2 с учетом перекрытия в зацеплении (перекрытие в зацеплении указывает на одновременную передачу нагрузки двумя парами сопряженных зубьев). При этом распределение нагрузки между парами будет определяться реальной точностью изготовления передачи. Для учета отмеченного явления в расчет вводят коэффициент - коэффициент, учитывающий распределение нагрузки между зубьями. Для прямозубых передач перекрытие в зацеплении не велико и им обычно пренебрегают, принимая =1. Окончательно суммарная длина линии контакта определяется так:

l = bw* – передачи прямозубые; (2.15)

l= – передачи косозубые; (2.16)

где – коэффициент торцевого перекрытия в зацеплении.

При определении суммарной длины линии контакта ширина зубчатого венца bw и угол наклона зубьев β заданы, а величина коэффициента торцевого перекрытия εα при наличии геометрических параметров определяется в соответствии с теорией эвольвентного зацепления.

Отношение Fn /l с физических позиций представляет собой среднюю удельную нормальную нагрузку Wn, которую можно выразить через окружную составляющую и, в конечном итоге, через заданный крутящий момент, например для прямозубой передачи:

Отношение Ft/bw = Wtср называют средней удельной окружной нагрузкой. Как отмечалось в анализе условий получения формулы Герца, эта зависимость отвечает равномерному распределению контактных напряжений по ширине катков. Подобное распределение возможно лишь в случае строгой параллельности образующих контактирующих поверхностей, к примеру так, как это показано на рис. 2.10 б.

В реальной передаче имеется перекос зубчатых колес и рабочих поверхностей их зубьев относительно друг друга в начальный момент контакта на суммарный угол δ, включающий начальную непараллельность образующих поверхностей контакта, деформации валов и их опор и т. п. (рис. 2.10в,). Если бы зубья были абсолютно жесткими, их контакт и передача нагрузки Ft проходили бы лишь в одной точке (рис.2.10в). Реально упругие зубья под действием момента силы Ft начнут деформироваться и постепенно контакт должен распространиться на всю ширину зуба (применение зубчатых колес с bw, превышающей длину линии контакта – рис.2.10г – не имеет смысла). Очевидно, что участки линии контакта, расположенные снизу на рис. 2.10 будут более деформированными и, в соответствии с законом Гука, более нагруженными. Реальное распределение удельной окружной нагрузки иллюстрируется эпюрой на этом рисунке. Из приведенных соображений следует, что увеличение длины линии контакта (ширины зубчатых колес) приводит к росту неравномерности распределения W и необходимости ограничения ширины колес. При значительных bw контакт не будет распространяться на всю ширину зуба, как это показано на рис.2.10г. В практических расчетах ограничивают относительную ширину шестерни или . Естественно ожидать, что первоначально контактное выкрашивание начнется в зоне действия Wtmax и именно это значение следует принять для дальнейших расчетов. Максимальное значение удельной нагрузки на эпюре можно представить как Wtmax=Wtср*Kβ. Kβ называют коэффициентом, учитывающим неравномерность распределения нагрузки по ширине зуба. В расчетах на контактную прочность его обозначают K.

При определении расчетной удельной окружной нагрузки также учитывают дополнительную динамическую силу, возникающую в передаче из-за неравномерности вращения ведомого колеса. Как отмечалось выше, эту силу не рассматривают в силовом анализе, а учитывают непосредственно в прочностных расчетах с помощью коэффициента динамичности KHV. Таким образом, для прямозубой передачи:

. (2.17)

Выше отмечена физическая природа вводимых в уравнение Герца коэффициентов и . Методы их определения раскрыты ниже.

г) Приведенный радиус кривизны ρпр определяется по зависимости ( ), в которой в соответствии с расчетной моделью ρ1 и ρ2 радиусы кривизны эвольвентных поверхностей шестерни и колеса в полюсе зацепления. Как известно, эвольвента есть кривая, очерчиваемая концом отрезка прямой при качении его без скольжения по окружности (рис. 2.11). Радиусы кривизны в точках т.1, т.2 и т. д. определяются длиной отрезка от его конца до точки касания окружности. Эвольвентные поверхности зубьев получают при обкатывании отрезков линии зацепления по основным окружностям db1 и db2. В соответствии с рис. 2.10, для прямозубых колес можно записать

ρ1 = ; ρ2 = , тогда

Рис.2.11. К определению радиуса

Для исключения влияния знака передаточного отношения в формулу подставляют его модуль. При этом в случае расчета мультипликаторов (повышающих передач) подставляют величину обратную передаточному отношению, т.е. 1/i.

Подстановка значений (2.17); ρпр (2.18) в исходную формулу Герца после несложных преобразований позволяет получить проверочную формулу для оценки рабочих контактных напряжений

. (2.19)

В записанной формуле кроме обозначенных выше параметров

ZЕ = − коэффициент, учитывающий упругие свойства материалов сопряженных колес, который вычисляется в соответствии с (1.23): Zн = – коэффициент, учитывающий форму сопряженных поверхностей зубьев, формула для определения которого записана в универсальном виде, пригодном как для прямозубых, так и косозубых колес;

Zε – коэффициент, учитывающий перекрытие в зацеплении.

В прямозубой передаче принимают Zε = ; а в косозубой – Zε = .