Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МЖГ (гидростатика)Microsoft Word.doc
Скачиваний:
64
Добавлен:
15.11.2019
Размер:
641.54 Кб
Скачать

2.2. Основное уравнение гидростатики

Рассмотрим распространенный случай равновесия жидкости, когда на нее действует только одна массовая сила - сила тяжести, и получим уравнение, позволяющее находить гидростатическое давление в любой точке рассматриваемого объема жидкости. Это уравнение называется основным уравнением гидростатики.

По основному уравнению гидростатики определяется абсолютное давление в любой точке покоящейся жидкости.

Рисунок 7 — Схема к выводу основного уравнения

гидростатики

Определим абсолютное давление в точке М покоящейся жидкости на глубине h (рисунок 7).

Выделим цилиндрический объём жидкости высотой h с площадью основания S.

Этот объём жидкости находится в покое (в равновесии). Условие равновесия выделенного объёма жидкости в вертикальном направлении (сумма всех сил, действующих на выделенный объём жидкости в вертикальном направлении равна нулю):

(14)

где РS — сила давления жидкости на цилиндр снизу; РоS — сила давления жидкости на цилиндр сверху; G = gV = ghS — вес цилиндрического столба жидкости.

Тогда равенство (14) запишется:

(15)

Разделив обе части равенства (15) на S  0, получим:

(16)

Равенство (16) — основное уравнение гидростатики.

Проведем на глубине h горизонтальную поверхность О-О. Давление во всех точках этой поверхности будет одинаковым, так как h = const:

поэтому любая горизонтальная поверхность, проведённая в однородной покоящейся жидкости, является поверхностью равного давления (следствие из основного уравнения гидростатики).

Из основного уравнения гидростатики видно, что какую бы точку в объеме всего сосуда мы не взяли, на нее всегда будет действовать давление, приложенное к внешней поверхности P0. Другими словами давление, приложенное к внешней поверхности жидкости, передается всем точкам этой жидкости по всем направлениям одинаково. Это положение известно под названием закона Паскаля.

Поверхность, во всех точках которой давление одинаково, называется поверхностью уровня. В обычных условиях поверхности уровня представляют собой горизонтальные плоскости, а свободная поверхность является одной из поверхностей уровня.

Возьмем на произвольной высоте горизонтальную плоскость сравнения, от которой вертикально вверх будем отсчитывать координаты z. Обозначив через z координату точки М, через z0 – координату свободной поверхности жидкости и заменив в уравнении (17) h на z0-z, получим

(17)

Так как точка М взята произвольно, можно утверждать, что для всего рассматриваемого объема жидкости

Координата z называется геометрической высотой. Величина имеет линейную размерность и называется гидростатическим напором.

Таким образом, гидростатический напор есть величина постоянная для всего объема неподвижной жидкости.

2.3 Закон Паскаля и его техническое применение

Рисунок 8 — Схемы, иллюстрирующие передачу давления в покоящейся жидкости

В соответствии с основным уравнением гидростатики (16) абсолютные давления в произвольно выбранных точках жидкости А, В, С будут соответственно равны:

ра = ро + pghA,

рВ = ро + pghB,

рс= ро + pghc.

Поместим на свободную поверхность жидкости, находящейся в равновесии в резервуаре (рисунок 6 а) поршень и приложим к нему силу Ро, в результате чего со стороны поршня на жидкость возникает давление Р0.

Из анализа полученных уравнений видно, что абсолютные давления в точках жидкости, находящихся на разной глубине, будут различные, однако внешнее давление, производимое на свободную поверхность жидкости в замкнутом сосуде, передается во все её точки без изменения. В этом заключается закон Паскаля.

Практически закон Паскаля используется в ряде гидравлических машин: гидравлических прессах и подъемниках, объемных насосах и гидродвигателях и др.

На рисунке 8 б приведена принципиальная схема гидравлического пресса. Прикладывая к меньшему поршню силу Р1, создаем в жидкости давление

или

которое в соответствии с законом Паскаля передаётся во все точки жидкости, в том числе и на больший поршень, вызывая на нём силу:

(18)