- •Мохунь і.І.
- •Інтегральна оптика в інформаційній техніці
- •1. Оптичний сигнал і його розповсюдження
- •1.2. Зміна фази хвилі при її розповсюдженні
- •1.2.1.Фазова затримка
- •1.2.2. Фазова затримка, що вноситься тонким оптичним елементом
- •1.2.3. Фазова затримка, що вноситься тонкою збираючою лінзою
- •1.3. Математичні основи аналогових оптичних процесорів
- •1.3.1. Перетворення Фур’є
- •1.3.3.1. Геометричне тлумачення згортки і кореляції
- •1.3.3.2. Фур’є-образ згортки і кореляції
- •1.4. Розповсюдження оптичної хвилі
- •1.4.1. Розповсюдження оптичної хвилі у вільному просторі
- •1.4.2. Реалізація фур’є-перетворення в оптиці і в інтегральній оптиці зокрема
- •2. Теорія оптичного хвилеводу
- •2.2. Оптико-геометричний підхід до фізики плоского хвилеводу
- •2.2.1. Дисперсійне рівняння хвилеводу
- •2.2.3. Ефективна товщина хвилеводу
- •2.2.4. Довжина оптичного “зигзагу”
- •2.2.5. Кількість мод, які можуть розповсюджуватися у хвилеводі
- •2.2.6. Різниця між коефіцієнтами заломлення хвилеводу та оточуючих шарів.
- •2.3. Реальний хвилевід
- •2.4. Дисперсія у хвилевідній системі
- •2.4.1. Хроматична дисперсія
- •2.4.2. Модова дисперсія
- •2.5. Розповсюдження хвиль у градієнтному хвилеводі
- •3. Базові елементи інтегральної оптики. Пасивні елементи
- •3.1. Елементи введення-виведення (інтегрально-оптичні елементи зв’язку)
- •3.1.1. Призмовий елемент введення-виведення
- •3.1.2. Решітчастий елемент введення-виведення
- •3.2. Планарні оптичні елементи
- •3.2.1. Лінзи Люнеберга
- •3.2.2. Геодезична лінза
- •3.2.3. Дифракційні лінзи
- •4. Активні елементи інтегральної оптики
- •4.1. Електрооптичні пристрої
- •4.1.1. Модулятори-перемикачі на основі ефекту тунельної перекачуванни світла, або модулятори-перемикачі на зв’язаних хвилеводах
- •4.1.2. Модулятори-перемикачі інтерференційного типу
- •4.1.3. Електрооптичні модулятори на основі ефекту Брега
- •4.1.4. Електроабсорбційні модулятори
- •4.2. Акустооптичні модулятори
- •4.3. Магнітно-оптичні модулятори
- •4.4. Генерація світла в системах інтегральної оптики
- •5. Інтегральна оптика в приладах і пристроях
- •5.1. Датчики фізичних величин та пристрої на основі решітчастих елементів введення-виведення
- •5.1.1. Кутовимірювальні датчики
- •5.1.2. Хвилевідні фільтри на основі явищ аномального відбивання пропускання
- •5.2. Інтегрально-оптичні пристрої обробки інформаційних сигналів. Принципи оптичної хвилевідної обробки сигналів. Методи побудови оіс для інформаційної техніки
- •5.2.1. Типи та основні класи оіс для обробки інформації
- •5.2.2. Оіс для обробки сигналів
- •5.2.2.1. Інтегрально-оптичні спектроаналізатори високочастотних сигналів
- •5.2.2.2. Інтегрально-оптичні корелят ори
- •5.3. Аналого-цифрові перетворювачі. Чотири розрядний ацп
- •5.4. ОІс для обчислювальної техніки
- •5.4.2. Приклади побудови логічних елементів
- •6. Нейронні і нейроподібні мережі та їх оптична реалізація.
- •6.1. Структура нейронних мереж.
- •6.2.Алгоритм роботи нейронної мережі. Алгоритм Хопфілда
- •6.3. Перспективи розвитку оптичних нейронних мереж.
- •6.4. Реалізація оптичних нейронних мереж
- •6.4.1 Оптична нейронна мережа з процесорним ядром у вигляді безопорнрої голограми.
- •6.4.2. Оптична нейронна мережа з процесорним ядром у вигляді узгодженого фільтра.
- •6.4.3. Недоліки і переваги обох систем.
- •7. Оптичний зв’язок відкритими каналами
- •7.1. Розповсюдження світла через атмосферу
- •7.1.1. Молекулярне поглинання
- •7.1.2. Поглинання та розсіювання рідкими або твердими частинками
- •7.1.3. Атмосферна турбулентність
- •7.2. Макрохвилеводи
- •Волоконно-оптичні лінії зв’язку. Пасивні та активні елементи восп
- •1. Фізичні характеристики оптичного волокна
- •1.1. Основні елементи оптичного волокна
- •1.2. Типи і характеристики оптичного волокна
- •1.2.1. Профілі показника заломлення
- •1.3. Властивості оптичних волокон як передаючого середовища
- •1.3.1. Поглинання в оптичних волокнах
- •1.3.2. Дисперсія
- •1.4. Геометричні параметри волокна
- •1.4.1. Відносна різниця показників заломлення ядра та оболонки
- •1.4.2. Числова апертура волокна
- •1.4.3. Нормована частота
- •1.4.4. Хвиля відсічки
- •1.4.5. Наближена оцінка міжмодової дисперсії багатомодового волокна
- •1.5. Характеристики оптичних волокон згідно з рекомендаціями itu-t
- •1.6. Нелінійні оптичні явища в одномодових волокнах
- •1.6.1. Фазова самомодуляція (фсм) та перехресна фазова модуляція (фкм)
- •1.6.2. Вимушене комбінаційне (Раманське) розсіяння вкр (srs) і розсіяння Мандельштама-Бриллюена врмб (sbs)
- •1.7. Одномодові волокна нових типів виробництва компаній lucent technologies cornigs.
- •2. Оптичні кабелі
- •2.1. Особливості конструкції оптичних кабелів
- •2.2. Монтаж оптичних кабелів
- •2.2.1. Аналіз втрат, які виникають у процесі монтажу оптичних кабелів зв’язку
- •2.2.2. Методи з’єднання оптичних волокон
- •2.2.3. Зварні з’єднання
- •2.2.4. Клейові з’єднання
- •2.2.4. Механічні з’єднувачі
- •2.2.5. Рознімні з’єднання
- •3. Пасивні оптичні елементи волз
- •3.1. Волоконно-оптичні відгалужувачі і розгалужувачі
- •3.1.1. Зварні відгалужувачі
- •3.1.2. Відгалужувачі із градієнтною циліндричною лінзою
- •3.1.3. Спектрально-селективні розгалужувачі (мультиплексори/демультиплексори)
- •3.2. Волоконно-оптичні перемикачі
- •3.2.1. Електромеханічні перемикачі
- •3.2.2. Термооптичні перемикачі
- •3.2.3. Електрооптичні перемикачі
- •3.2.4. Оптичні ізолятори
- •4. Активні елементи волз
- •4.1. Джерела випромінювання
- •4.1.1. Світлодіоди
- •4.1.2. Лазерні діоди (лд)
- •4.1.3. Фабрі-Перо-лазер
- •4.1.4. Лазери з розподіленим оберненим зв’язком (роз-лазери) і розподіленим брегівським відбиванням (рбв-лазери)
- •4.1.5. Лазерні діоди із зовнішнім резонатором
- •4.1.6. Найважливіші характеристики джерел випромінювання для волз
- •5.2. Складові елементи передавального оптоелектронного модуля
- •5. Приймальні оптоелектронні модулі. Ретранслятори, підсилювачі
- •5.1. Приймальні оптоелектронні модулі (пром)
- •5.1.1. Функціональний склад пром
- •5.1.3. Лавинні фотодіоди
- •5.1.4. Технічні характеристики фотоприймачів
- •5.2.5. Таймер
- •6. Повторювачі та оптичні підсилювачі
- •6.1. Типи ретрансляторів
- •6.1.1. Повторювачі
- •6.1.2. Оптичні підсилювачі
- •6.1.3. Підсилювачі Фабрі-Перо
- •6.1.4. Підсилювачі на волокні, які використовують бріллюенівське розсіювання
- •6.1.5. Підсилювачі на волокні, які використовують раманівське розсіювання
- •6.1.6. Напівпровідникові лазерні підсилювачі
- •6.2. Підсилювачі на домішковому волокні. Волоконно-оптичні підсилювачі
- •6.3. Інші характеристики ербієвих волоконних підсилювачів
- •6.4. Схеми накачування ербієвого волокна воп
- •Список літератури до частини іі
- •Волоконно-оптичні системи передавання
- •1. Сигнали та системи передавання інформації
- •1.1. Системи передавання цифрових сигналів
- •1.1.1. Основні поняття і термінологія
- •1.2. Структура систем зв’язку
- •1.3. Способи передавання сигналів
- •1.3.1. Послідовне і паралельне передавання сигналів
- •1.3.2. Синхронне та асинхронне передавання сигналів
- •1.3.3. Поелементне передавання сигналів
- •1.3.4. Передавання сигналів кодовими комбінаціями
- •1.4. Особливості каналів зв’язку
- •1.4.1. Особливості аналогових каналів зв’язку
- •1.4.2. Особливості цифрових каналів зв’язку
- •1.5. Параметри цифрової системи зв’язку
- •2. Волоконно-оптичні системи зв’язку
- •2.1. Структура волоконно-оптичної лінії зв’язку
- •2.2. Переваги використання оптичних волокон у системах зв’язку
- •3. Проектування (планування) волоконно- оптичної лінії зв’язку
- •3.1. Аналіз смуги пропускання волз
- •3.2. Втрати і обмеження в лініях зв’язку
- •4. Системи передавання інформації
- •4.1. Системи зв’язку плезіохронної цифрової цифрової ієрархії
- •4.1.1. Системи зв’язку для ліній зв’язку первинної цифрової ієрархії е1
- •4.1.2. Системи зв’язку для ліній зв’язку вторинної цифрової ієрархії е2
- •4.1.3. Системи зв’язку для ліній зв’язку третинної цифрової ієрархії е3
- •4.1.4. Системи зв’язку цифрової плезіохронної ієрархії е4
- •4.2. Системи і обладнання синхронної цифрової ієрархії
- •4.2.1. Синхронна цифрова ієрархія та мережі
- •4.2.2. Апаратура сці (sdh)
- •4.2.3. Апаратура sdh компанії Lucent technologies
- •4.2.4. Апаратура сці виробництва фірми siemens
- •5. Методи ущільнення інформаційних потоків
- •5.2. Метод часового ущільнення
- •5.3. Модове ущільнення
- •5.4. Ущільнення за поляризацією
- •5.6. Оптичне часове ущільнення (otdm)
- •5.7. Методи ущільнення каналів за полярністю
- •Список літератури до частини ііі:
- •8. Мохунь і.І, Полянський п.В. Інтегральна оптика в інформаційній техніці. Конспект лекцій. – Чернівці, Рута, 2002, – 79 с.
- •Задачі та практичні питання до курсів
- •І. Інтегральна оптика в інформаційній техніці
- •Іі. Волоконно-оптичні системи передавання.
- •Додаток 1 Розрахунок регенераційної ділянки волз
- •1.3. Втрати потужності на з’єднаннях:
- •1.2. Втрати потужності на введення-виведення .
- •1.3. Втрати потужності на з’єднаннях:
- •2. Зберігання форми переданого сигналу, можливість відновлення його початкової форми.
- •Перевід величини втрат з відсотків до дБ та навпаки
1.2. Структура систем зв’язку
На рисунку 1.2.1 зображена структурна схема одноканальної системи зв’язку.
Джерело повідомлення та одержувач повідомлення – люди або різного роду пристрої (автомат, комп’ютер і т.ін.).
К
одер
джерела – виконує
задачу зменшення надлишковості при
передаванні повідомлення в канал
зв’язку, а декодер
джерела – відновлення
прийнятого по каналу зв’язку повідомлення.
П
Рис.
1.2.1. Структурна схема
одноканальної системи зв’язку ДП
– джерело повідомлення; КД – кодер
джерела; КК – кодер каналу; ППС –
пристрій перетворення сигналу; ДК –
декодер каналу; ДД – декодер джерела;
ОП – одержувач повідомлення; ДЗ –
джерело завад
(де
- повідомлення, яке передається) можуть
бути статистично пов’язані (наприклад,
сполучники, прийменники, розділові
знаки). Такий зв’язок символів дозволяє
частину повідомлення не передавати,
відновлюючи його на приймальному кінці
лінії за відомим статистичним зв’язком.
Ліквідація надлишковості призводить до того, що за задані проміжки часу передається більше повідомлень, і, як наслідок, більш ефективно використовується канал зв’язку.
Кодер каналу здійснює надлишкове кодування повідомлення з метою підвищення надійності передавання вірної інформації. На приймальному кінці декодер каналу виконує обернене перетворення (декодування), в результаті якого отримуємо комбінацію початкового коду. Часто кодер та декодер називають пристроєм захисту від помилок (ПЗП).
Пристрої перетворення сигналів – пристрої, які міститься на обох кінцях каналу зв’язку та використовуються для узгодження кодера та декодера каналу із середовищем каналу зв’язку. В окремих випадках з цією метою можуть застосовуватись модулятор та демодулятор.
При проходженні сигналу через реальний канал зв’язку сигнал спотворюється і тому на приймальному кінці повідомлення може відтворюватися з деякою помилкою. Причиною виникнення таких помилок можуть бути як спотворення, які вносить сам канал зв’язку, так і завади, що впливають на сигнал із зовнішнього середовища.
Завадою називають будь-який випадковий (іноді детермінований) вплив на сигнал, що погіршує правильність відтворення повідомлень, що передаються.
Завади досить різноманітні як за своїм походженням, так і за своїми фізичними властивостями.
Атмосферні завади зумовлені електричними процесами в атмосфері і насамперед грозовими розрядами. Енергія такого типу завад в основному сконцентрована в області довгих та середніх хвиль.
Індустріальні завади виникають внаслідок різких перепадів току в різного роду промисловому устаткуванні.
Розповсюджені також завади, що виникають внаслідок впливу сторонніх каналів зв’язку та радіостанцій.
У провідних системах зв’язку основним типом завад є імпульсні завади та припинення зв’язку. Поява імпульсних завад часто пов’язана з автоматичною комутацією і перехресними наводками. Припинення зв’язку є явищем, при якому сигнал в лінії різко загасає або зникає.
Практично в будь-якому діапазоні частот мають місце внутрішні шуми апаратури.
У діапазоні ультракоротких хвиль мають значення космічні завади, які пов’язані з електромагнітними процесами, що відбуваються на Сонці, зірках і т.д.
В оптичному діапазоні частот суттєве значення має квантовий шум, викликаний дискретною природою світла.
У
реальному каналі зазвичай мають місце
адитивні
(які додаються до сигналу) і мультиплікативні
(які множаться на сигнал) завади. Тому
сигнал
у присутності завад можна записати у
вигляді:
.
(1.2.1)
Серед адитивних завад різного походження виділяють зосереджені по спектру (вузькозонні) завади, зосередженні в часі (імпульсні) завади та так звані флуктуаційні завади, які не зосереджені ні по спектру, ні в часі.
У техніці зв’язку розрізняють синхронні та асинхронні цифрові канали.
У синхронних цифрових каналах – кожний одиничний елемент, що передається, вводиться в канал у строго визначені моменти часу. Ці канали призначені тільки для передавання ізохронних сигналів, тому вони названі кодозалежними, або непрозорими.
В асинхронних каналах передаваний сигнал може вводитися в канал у будь-який момент часу, тобто по такому каналу можна передавати будь-які сигнали – ізохронні й анізохронні. Тому такі канали отримали назву прозорих, або кодонезалежних.
Дискретний канал разом з кодером і декодером каналу називається розширеним.
Цифровий канал характеризується такими параметрами:
Швидкістю передавання інформації, яка виміряється в бітах на секунду (біт.с).
Швидкістю телеграфування В, яка виміряється в бодах. Це кількість одиничних символів, що передається за секунду. У техніці передавання даних замість швидкості телеграфування використовується термін швидкість модуляції.
Ефективною швидкістю передавання інформації, яка визначається із врахуванням того, що не всі елементи, що передаються в канал, несуть інформацію; не всі комбінації, що поступають на вхід каналу, видаються одержувачу (частина комбінацій може бути забракована).
Коефіцієнтом помилок за елементами, який виявляє правильність проходження одиничних елементів по каналу і визначається відношенням помилково прийнятих елементів
до загальної кількості переданих
за інтервал аналізу:
.
(1.2.2)
Коефіцієнтом помилок за кодовими комбінаціями, який характеризує правильність проходження повідомлення по каналу зв’язку і визначається відношенням кількості помилково прийнятих кодових комбінацій до кількості переданих у заданому інтервалі часу.
Часом
,
впродовж якого по каналу можлива
передавання інформації.Динамічним діапазоном каналу
,
який визначається
відношенням допустимої потужності
передаваного сигналу до потужності
завад, які неминуче присутні в сигналі.
виражається в децибелах.Узагальненою характеристикою каналу, яка є його ємністю (об’ємом) та визначається виразом:
.
(1.2.3)
При
цьому необхідною умовою передавання
по каналу неспотвореної інформації з
об’ємом сигналу
очевидно повинна бути умова:
.
(1.2.4)
Перетворення первинного сигналу у високочастотний сигнал зазвичай переслідує мету узгодження сигналу з характеристиками каналу. У простішому випадку сигнал повинен бути узгоджений із каналом по всіх трьох параметрах:
.
(1.2.5)
В цьому випадку об’єм сигналу повністю “вписується” в об’єм каналу. Проте нерівність (1.2.4) може виконуватися і тоді, коли одна або дві з нерівностей (1.2.5) не виконуються. Це означає, що в процесі передавання можна проводити “обмін” їх тривалості на ширину спектра або на величину динамічного діапазону і т.д. Наприклад, якщо записаний на плівку телефонний сигнал, який має ширину спектра 3 кГц, необхідно передати через канал, що має смугу пропускання 300 Гц, то це можна зробити, передаючи сигнал з швидкістю в 10 разів меншою, ніж швидкість, з якою він був записаний. При цьому всі частоти початкового сигналу зменшаться в 10 разів і в стільки ж разів збільшиться час його передаванні. Аналогічно, сигнал можна передати швидше, якщо смуга пропускання каналу ширша, ніж ширина спектра сигналу.
У системі зв’язку, яка зображена на рисунку 1.1.1, передавання повідомлення відбувається лише в напрямку від джерела до одержувача. Такий режим зв’язку називається симплексним. Режим зв’язку, який забезпечує можливість одночасного передавання повідомлень в обох напрямках, має назву дуплексного. Можливий також і півдуплексний режим, коли обмін повідомленнями відбувається по черзі в обох напрямках.
