
- •Мохунь і.І.
- •Інтегральна оптика в інформаційній техніці
- •1. Оптичний сигнал і його розповсюдження
- •1.2. Зміна фази хвилі при її розповсюдженні
- •1.2.1.Фазова затримка
- •1.2.2. Фазова затримка, що вноситься тонким оптичним елементом
- •1.2.3. Фазова затримка, що вноситься тонкою збираючою лінзою
- •1.3. Математичні основи аналогових оптичних процесорів
- •1.3.1. Перетворення Фур’є
- •1.3.3.1. Геометричне тлумачення згортки і кореляції
- •1.3.3.2. Фур’є-образ згортки і кореляції
- •1.4. Розповсюдження оптичної хвилі
- •1.4.1. Розповсюдження оптичної хвилі у вільному просторі
- •1.4.2. Реалізація фур’є-перетворення в оптиці і в інтегральній оптиці зокрема
- •2. Теорія оптичного хвилеводу
- •2.2. Оптико-геометричний підхід до фізики плоского хвилеводу
- •2.2.1. Дисперсійне рівняння хвилеводу
- •2.2.3. Ефективна товщина хвилеводу
- •2.2.4. Довжина оптичного “зигзагу”
- •2.2.5. Кількість мод, які можуть розповсюджуватися у хвилеводі
- •2.2.6. Різниця між коефіцієнтами заломлення хвилеводу та оточуючих шарів.
- •2.3. Реальний хвилевід
- •2.4. Дисперсія у хвилевідній системі
- •2.4.1. Хроматична дисперсія
- •2.4.2. Модова дисперсія
- •2.5. Розповсюдження хвиль у градієнтному хвилеводі
- •3. Базові елементи інтегральної оптики. Пасивні елементи
- •3.1. Елементи введення-виведення (інтегрально-оптичні елементи зв’язку)
- •3.1.1. Призмовий елемент введення-виведення
- •3.1.2. Решітчастий елемент введення-виведення
- •3.2. Планарні оптичні елементи
- •3.2.1. Лінзи Люнеберга
- •3.2.2. Геодезична лінза
- •3.2.3. Дифракційні лінзи
- •4. Активні елементи інтегральної оптики
- •4.1. Електрооптичні пристрої
- •4.1.1. Модулятори-перемикачі на основі ефекту тунельної перекачуванни світла, або модулятори-перемикачі на зв’язаних хвилеводах
- •4.1.2. Модулятори-перемикачі інтерференційного типу
- •4.1.3. Електрооптичні модулятори на основі ефекту Брега
- •4.1.4. Електроабсорбційні модулятори
- •4.2. Акустооптичні модулятори
- •4.3. Магнітно-оптичні модулятори
- •4.4. Генерація світла в системах інтегральної оптики
- •5. Інтегральна оптика в приладах і пристроях
- •5.1. Датчики фізичних величин та пристрої на основі решітчастих елементів введення-виведення
- •5.1.1. Кутовимірювальні датчики
- •5.1.2. Хвилевідні фільтри на основі явищ аномального відбивання пропускання
- •5.2. Інтегрально-оптичні пристрої обробки інформаційних сигналів. Принципи оптичної хвилевідної обробки сигналів. Методи побудови оіс для інформаційної техніки
- •5.2.1. Типи та основні класи оіс для обробки інформації
- •5.2.2. Оіс для обробки сигналів
- •5.2.2.1. Інтегрально-оптичні спектроаналізатори високочастотних сигналів
- •5.2.2.2. Інтегрально-оптичні корелят ори
- •5.3. Аналого-цифрові перетворювачі. Чотири розрядний ацп
- •5.4. ОІс для обчислювальної техніки
- •5.4.2. Приклади побудови логічних елементів
- •6. Нейронні і нейроподібні мережі та їх оптична реалізація.
- •6.1. Структура нейронних мереж.
- •6.2.Алгоритм роботи нейронної мережі. Алгоритм Хопфілда
- •6.3. Перспективи розвитку оптичних нейронних мереж.
- •6.4. Реалізація оптичних нейронних мереж
- •6.4.1 Оптична нейронна мережа з процесорним ядром у вигляді безопорнрої голограми.
- •6.4.2. Оптична нейронна мережа з процесорним ядром у вигляді узгодженого фільтра.
- •6.4.3. Недоліки і переваги обох систем.
- •7. Оптичний зв’язок відкритими каналами
- •7.1. Розповсюдження світла через атмосферу
- •7.1.1. Молекулярне поглинання
- •7.1.2. Поглинання та розсіювання рідкими або твердими частинками
- •7.1.3. Атмосферна турбулентність
- •7.2. Макрохвилеводи
- •Волоконно-оптичні лінії зв’язку. Пасивні та активні елементи восп
- •1. Фізичні характеристики оптичного волокна
- •1.1. Основні елементи оптичного волокна
- •1.2. Типи і характеристики оптичного волокна
- •1.2.1. Профілі показника заломлення
- •1.3. Властивості оптичних волокон як передаючого середовища
- •1.3.1. Поглинання в оптичних волокнах
- •1.3.2. Дисперсія
- •1.4. Геометричні параметри волокна
- •1.4.1. Відносна різниця показників заломлення ядра та оболонки
- •1.4.2. Числова апертура волокна
- •1.4.3. Нормована частота
- •1.4.4. Хвиля відсічки
- •1.4.5. Наближена оцінка міжмодової дисперсії багатомодового волокна
- •1.5. Характеристики оптичних волокон згідно з рекомендаціями itu-t
- •1.6. Нелінійні оптичні явища в одномодових волокнах
- •1.6.1. Фазова самомодуляція (фсм) та перехресна фазова модуляція (фкм)
- •1.6.2. Вимушене комбінаційне (Раманське) розсіяння вкр (srs) і розсіяння Мандельштама-Бриллюена врмб (sbs)
- •1.7. Одномодові волокна нових типів виробництва компаній lucent technologies cornigs.
- •2. Оптичні кабелі
- •2.1. Особливості конструкції оптичних кабелів
- •2.2. Монтаж оптичних кабелів
- •2.2.1. Аналіз втрат, які виникають у процесі монтажу оптичних кабелів зв’язку
- •2.2.2. Методи з’єднання оптичних волокон
- •2.2.3. Зварні з’єднання
- •2.2.4. Клейові з’єднання
- •2.2.4. Механічні з’єднувачі
- •2.2.5. Рознімні з’єднання
- •3. Пасивні оптичні елементи волз
- •3.1. Волоконно-оптичні відгалужувачі і розгалужувачі
- •3.1.1. Зварні відгалужувачі
- •3.1.2. Відгалужувачі із градієнтною циліндричною лінзою
- •3.1.3. Спектрально-селективні розгалужувачі (мультиплексори/демультиплексори)
- •3.2. Волоконно-оптичні перемикачі
- •3.2.1. Електромеханічні перемикачі
- •3.2.2. Термооптичні перемикачі
- •3.2.3. Електрооптичні перемикачі
- •3.2.4. Оптичні ізолятори
- •4. Активні елементи волз
- •4.1. Джерела випромінювання
- •4.1.1. Світлодіоди
- •4.1.2. Лазерні діоди (лд)
- •4.1.3. Фабрі-Перо-лазер
- •4.1.4. Лазери з розподіленим оберненим зв’язком (роз-лазери) і розподіленим брегівським відбиванням (рбв-лазери)
- •4.1.5. Лазерні діоди із зовнішнім резонатором
- •4.1.6. Найважливіші характеристики джерел випромінювання для волз
- •5.2. Складові елементи передавального оптоелектронного модуля
- •5. Приймальні оптоелектронні модулі. Ретранслятори, підсилювачі
- •5.1. Приймальні оптоелектронні модулі (пром)
- •5.1.1. Функціональний склад пром
- •5.1.3. Лавинні фотодіоди
- •5.1.4. Технічні характеристики фотоприймачів
- •5.2.5. Таймер
- •6. Повторювачі та оптичні підсилювачі
- •6.1. Типи ретрансляторів
- •6.1.1. Повторювачі
- •6.1.2. Оптичні підсилювачі
- •6.1.3. Підсилювачі Фабрі-Перо
- •6.1.4. Підсилювачі на волокні, які використовують бріллюенівське розсіювання
- •6.1.5. Підсилювачі на волокні, які використовують раманівське розсіювання
- •6.1.6. Напівпровідникові лазерні підсилювачі
- •6.2. Підсилювачі на домішковому волокні. Волоконно-оптичні підсилювачі
- •6.3. Інші характеристики ербієвих волоконних підсилювачів
- •6.4. Схеми накачування ербієвого волокна воп
- •Список літератури до частини іі
- •Волоконно-оптичні системи передавання
- •1. Сигнали та системи передавання інформації
- •1.1. Системи передавання цифрових сигналів
- •1.1.1. Основні поняття і термінологія
- •1.2. Структура систем зв’язку
- •1.3. Способи передавання сигналів
- •1.3.1. Послідовне і паралельне передавання сигналів
- •1.3.2. Синхронне та асинхронне передавання сигналів
- •1.3.3. Поелементне передавання сигналів
- •1.3.4. Передавання сигналів кодовими комбінаціями
- •1.4. Особливості каналів зв’язку
- •1.4.1. Особливості аналогових каналів зв’язку
- •1.4.2. Особливості цифрових каналів зв’язку
- •1.5. Параметри цифрової системи зв’язку
- •2. Волоконно-оптичні системи зв’язку
- •2.1. Структура волоконно-оптичної лінії зв’язку
- •2.2. Переваги використання оптичних волокон у системах зв’язку
- •3. Проектування (планування) волоконно- оптичної лінії зв’язку
- •3.1. Аналіз смуги пропускання волз
- •3.2. Втрати і обмеження в лініях зв’язку
- •4. Системи передавання інформації
- •4.1. Системи зв’язку плезіохронної цифрової цифрової ієрархії
- •4.1.1. Системи зв’язку для ліній зв’язку первинної цифрової ієрархії е1
- •4.1.2. Системи зв’язку для ліній зв’язку вторинної цифрової ієрархії е2
- •4.1.3. Системи зв’язку для ліній зв’язку третинної цифрової ієрархії е3
- •4.1.4. Системи зв’язку цифрової плезіохронної ієрархії е4
- •4.2. Системи і обладнання синхронної цифрової ієрархії
- •4.2.1. Синхронна цифрова ієрархія та мережі
- •4.2.2. Апаратура сці (sdh)
- •4.2.3. Апаратура sdh компанії Lucent technologies
- •4.2.4. Апаратура сці виробництва фірми siemens
- •5. Методи ущільнення інформаційних потоків
- •5.2. Метод часового ущільнення
- •5.3. Модове ущільнення
- •5.4. Ущільнення за поляризацією
- •5.6. Оптичне часове ущільнення (otdm)
- •5.7. Методи ущільнення каналів за полярністю
- •Список літератури до частини ііі:
- •8. Мохунь і.І, Полянський п.В. Інтегральна оптика в інформаційній техніці. Конспект лекцій. – Чернівці, Рута, 2002, – 79 с.
- •Задачі та практичні питання до курсів
- •І. Інтегральна оптика в інформаційній техніці
- •Іі. Волоконно-оптичні системи передавання.
- •Додаток 1 Розрахунок регенераційної ділянки волз
- •1.3. Втрати потужності на з’єднаннях:
- •1.2. Втрати потужності на введення-виведення .
- •1.3. Втрати потужності на з’єднаннях:
- •2. Зберігання форми переданого сигналу, можливість відновлення його початкової форми.
- •Перевід величини втрат з відсотків до дБ та навпаки
5.2.1. Типи та основні класи оіс для обробки інформації
Класифікацію ОІС можна провести багатьма шляхами. Наприклад за конструкторсько-технологічним і фізичним принципам побудови, за призначенням типу матеріалів, що використовуються, тощо. З практичної точки зору найбільш суттєва різниця між ОІС пов’язана з можливістю та (або) необхідністю їх стиковки з волоконно-оптичними системами. В залежності від типу з’єднання можна виділити три основних типи ОІС:
ОІС, які вимагають стиковки з волоконним світловодом як на вході, так і на виході;
ОІС, які вимагають стиковки з волоконним світловодом лише на виході;
ОІС, які не вимагають стиковки з волоконним світловодом.
ОІС другого третього класу стикуються на вході як правило з випромінювачем або з іншою ОІС, а ОІС третього типу стикується на виході з фотоприймачем або іншою ОІС.
З точки зору функціонального призначення можна виділити три основні класи ОІС для обробки інформації:
Аналогові ОІС для обробки сигналів;
Цифрові та логічні ОІС для обчислювальної техніки;
Комутуючи ОІС.
Прикладами ОІС 1-го класу є ІО-спектроаналізатори, корелятори, аналого-цифрові та цифро-аналогові перетворювачі (АЦП та ЦАП) та ін. До другого класу відносяться арифметичні та логічні ОІС мультістабільні ОІС, тощо. ОІС третього класу це різного робу перемикачі та комутатори.
5.2.2. Оіс для обробки сигналів
5.2.2.1. Інтегрально-оптичні спектроаналізатори високочастотних сигналів
Рисунок
5.2.1 ілюструє схему інтегрально-оптичного
аналізатора спектра. Підкладенка –
кремній/окисел кремнію (
)
П
роведемо
оцінку трансформації просторових
параметрів інформаційного сигналу за
допомогою ПАХ-модулятора:
-
Частота модуляції електричного сигналу
~
Гц;
- Частота модуляції звукового сигналу (та сама) ~ Гц;
-
Швидкість розповсюдження електричного
сигналу ~
м/с;
-
Швидкість розповсюдження звукового
сигналу ~
м/с.
З
Рис.
5.2.1. Схема інтегрально-оптичного
спектроаналізатора:
1
– напівпровідниковий лазер, 2 –
градієнтні лінзи Френеля, ПАХ –
перетворювач,
4
– матриця приймачів, 5 – хвилевід, 6 –
підкладенка (
),
7 – шар оксиду цинку.
випливає, що
,
а довжина акустичної хвилі і відповідно
період наведеної решітки
.
Природно, що такі періоди решітки легко
вкладаються в межі роздільної здатності
більшості матеріалів. Отже, трансформація
сигналу з радіо у звуковий діапазон
призводить до значного спрощення його
аналізу. Додамо, що граничні частоти,
які можуть бути проаналізовані за
допомогою такого типу аналізаторів,
сягають величини 500 МГц.
С
уттєвий
недолік такого спектроаналізатора
полягає в тому, що штирковий перетворювач
спроможний ефективно збуджувати
поверхневу акустичну хвилю лише певної
відносно невеликої смуги частот (не
більше 100 Мгц).
Ц
Рис.
5.2.2
Проведемо оціночний розрахунок роздільної здатності спектроаналізатора за частотою електричного сигналу.
Нагадаємо, що об’єктив створює в фокальній площині Фур’є-образ поля, яке сформоване перед лінзою:
(5.2.1)
де
– просторова координата в фокальній
площині,
– фокальна відстань об’єктива,
– показник заломлення лінзи. Проте
початкове поле
– задане в області
(див. рисунок 5.2.1), яка обмежена робочою
ділянкою модулятора (якщо, вона менше
ніж вхідний отвір об’єктива), або вхідним
отвором об’єктива (якщо робоча ділянка
модулятора більше ніж цей отвір). В
такому випадку (5.2.1) трансформується до
вигляду:
(5.2.2)
Згідно з (5.2.2)
(5.2.3)
Отже
будь-яка плоска хвиля фокусується
об’єктивом в пляму, розміри якої за
звичай визначають, як розміри області,
що займає нульовий дифракційний максимум
функції
.
Відповідно розміри цього порядку (та
мінімально можлива величина дифракційної
плями) визначається співвідношенням:
(5.2.4)
З цього співвідношення випливає низка висновків:
1. Немає сенсу робити розміри приймальних площинок фотоприймача менше ніж ця величина
2. Роздільна здатність спектроаналізатора визначається різницею кутів дифракції
,
(5.2.5)
яка відповідає періодам бігучих хвиль, що утворюються близькими за частотою сигналами.
Період бігучої „акустичної” решітки дорівнює довжині акустичної хвилі:
,
(5.2.6)
де
- частота електричного сигналу. Тоді,
виходячи з формули решітки
(при умові, що
та використовується перший дифракційний
порядок) маємо
,
або
(5.2.7)
де
– швидкість звука в середовищі хвилеводу.
При
м/с,
та
мм,
КГц