Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Глава 1.doc
Скачиваний:
7
Добавлен:
14.11.2019
Размер:
1.92 Mб
Скачать

1.3.4. Ускорение материальной точки

При движении материальной точки ее скорость может изменяться со временем. Для характеристики изменения скорости вводят ускорение как производную по времени вектора скорости:

(1.14)

или в проекциях на декартовы оси координат

, , . (1.15)

Ускорение , в отличие от скорости , может иметь любую ориентацию по отношению к направлению движения материальной точки. Очевидно, что модуль ускорения связан с его проекциями соотношением

. (1.16)

По аналогии с п.1.3.3 вводят средний вектор ускорения , его модуль и среднее ускорение .

В общем случае, когда изменяется как модуль скорости , так и ее направление (случай неравномерного криволинейного движения), движение характеризуют с помощью естественных составляющих вектора , который называется полным ускорением.

Представим вектор скорости в естественном виде:

, (1.17)

где – модуль скорости, а – орт скорости.

Используя определение (1.14), получим

. (1.18)

Первую составляющую в правой части равенства (1.18) обозначим

, (1.19)

а вторую

. (1.20)

Смысл составляющей достаточно очевиден: она характеризует быстроту изменения со временем модуля скорости. Модуль этой составляющей равен , а направлена она по касательной к траектории в направлении движения , если скорость по модулю возрастает , и в противоположном движению направлении , если скорость по модулю убывает . Поэтому эта естественная составляющая ускорения называется тангенциальным (касательным) ускорением.

Вторая составляющая характеризует быстроту изменения вектора скорости по направлению (см. (1.13) из п. 1.3.3 и ниже).

Для выяснения величины и направления составляющей рассмотрим для простоты плоское криволинейное движение (рис 1.4). Будем считать, что точки 1 и 2, соответствующие моментам времени t и t+t, лежат на траектории достаточно близко друг к другу. В этом случае длину дуги траектории S между токами 1 и 2 можно считать приближенно дугой окружности радиуса R. Перене-

Рис. 1.4

сем параллельно орт в точку 1. Из рис. 1.4 видно, что треугольник 12С и треугольник, образованный ортами , и приращением , подобны. Следовательно,

.

Поэтому с учетом получим

.

Величину составляющей найдем из (1.20) с помощью ряда равенств

,

то есть

. (1.21)

Легко видеть, что при t вектор , а значит и , направлены перпендикулярно касательной к траектории к центру дуги S окружности. Введя единичный вектор нормали , выражению (1.21) можно придать вид

. (1.22)

В случае произвольной криволинейной траектории R означает радиус кривизны траектории в данной ее точке:

. (1.23)

Из-за своего направления составляющая называется нормальным (центростремительным) ускорением.

Теперь соотношению (1.18) можно придать вид (рис 1.5)

Рис.1.5

, (1.24)

а так как , то

и (1.25)

Соотношения (1.25) определяют величину и направление полного ускорения .

В качестве примера рассмотрим один из результатов, вытекающих из соотношений (1.19), (1.22) и (1.24).

Пусть тангенциальное ускорение равно нулю , а модуль нормального ускорения постоянен . Условие означает, что , то есть модуль скорости . Поэтому движение равномерное.

Теперь из условия следует, что радиус кривизны траектории R тоже постоянен, что для плоской кривой означает, что траектория есть окружность (в общем случае – винтовая линия).

Выводы: Ускорение характеризует быстроту изменения вектора скорости и равно производной скорости по времени. При криволинейном движении вектор ускорения имеет две составляющие: тангенциальное и нормальное ускорение. Тангенциальное ускорение характеризует скорость изменения модуля скорости и направлено по касательной к траектории движения. Нормальное ускорение характеризует скорость изменения вектора скорости по направлению и направлено по нормали к касательной к центру кривизны траектории точки.

Контрольные вопросы

1.7. Опишите движения материальной точки, исходя из условий а) a=0, an=0; б) a=const, an=0; в) a=а(t), an=0; г) a=0, an=const.

1.8. Возможно ли движение при условии ?