Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
финишные покрытия.doc
Скачиваний:
30
Добавлен:
14.11.2019
Размер:
360.96 Кб
Скачать

Дефекты enig-процесса

Наиболее распространены три вида дефектов, связанных с использованием финишного покрытия ENIG: пористое золотое покрытие, охрупчивание золота, эффект «черной контактной площадки».

Пористое золотое покрытие

Образование пористого золотого покрытия происходит в случае, когда атомы золота не формируют плотную кристаллическую решётку, позволяя атомам никеля мигрировать к поверхности и образовывать непаяемую поверхность. При использовании иммерсионного золота этот дефект происходит редко и обычно остается незамеченным, пока не появляются проблемы с паяемостью.

Охрупчивание золота

Если в меди растворено достаточное количество золота, происходит значительный рост образования хрупких интерметаллидов AuSn4, по границам которых происходит разрушение паяного соединения. Этого обычно не происходит, пока содержание золота в паяном соединении не достигнет 4% по массе и, вследствие этого, если толщина золотого покрытия не превышает 0,064 мкм, проблема отсутствует. При наличии выводов компонентов, покрытых сплавом Sn/Au, согласно стандарту J-STD-001 рекомендован процесс погружения выводов в припой для частичного растворения золота [11].

Эффект «черной контактной площадки» («black pad»)

Печатные платы, защитное покрытие на которые нанесено с помощью ENIG-процесса, могут иметь характерный дефект, называемый «черная контактная площадка» («black pad»). В результате возникновения данного дефекта образуются механически непрочные паяные соединения, которые могут треснуть и/или отслоиться даже под действием минимальной нагрузки. Дефект наиболее отчетливо проявляется для корпусов с матричным расположением выводов вследствие большей жесткости – BGA, QFP, QFN. Название дефекта произошло от темно-серой или черной поверхности площадки, обнажающейся при отслоении паяного соединения. Пример проявления этого дефекта для корпусов BGA и QFP показан на рис. 2 [26].

Рис. 2. Примеры образования дефекта «черная контактная площадка» для корпусов BGA и QFP: а) треснувшее паяное соединение с участием шарикового вывода BGA-компонента; б) посадочное место для BGA-компонента с одной черной контактной площадкой в) припаянный компонент QFP с треснувшим и смещенным выводом; г) черные контактные площадки на КП под QFP-компонент после снятия компонента и удаления избыточного припоя. Фото из [26]  

Механизм, ведущий к возникновению черной контактной площадки, в настоящее время еще окончательно не изучен, однако проведенные исследования свидетельствуют, в частности, о влиянии на его появление содержания фосфора в ванне, а также остаточного фосфора в покрытии после его нанесения. Фосфор выделяется в процессе восстановления никеля на поверхность медной площадки; при пайке и растворении золота в припое этот поверхностный слой фосфора обнажается. Он имеет плохую паяемость – припой не смачивает его поверхность и скатывается с нее. На рис. 3 показана поверхность разрушенного паяного соединения с участием шарикового вывода BGA-компонента, где содержание фосфора составило 28,25% [18].

Рис. 3. Снимок разрушенного паяного соединения с участием шарикового вывода BGA-компонента, сделанный с помощью сканирующего электронного микроскопа. Фото из [18]  

Недавно проведенные исследования производителя печатных плат, компании HADCO Santa Clara, Inc., продемонстрировали механизм, при котором никель в процессе иммерсионного золочения подвергался коррозии. Данный эффект получил название «повышенной активности иммерсионного золочения». Были прослежены различные стадии этой гиперактивности, в результате которых коррозии подвергались различные объемы никеля; при повышении ее уровня прочность интерметаллических соединений Ni-Sn после проведения пайки снижалась, что непосредственно вело к разрушению паяных соединений и наблюдаемому эффекту черной контактной площадки. Присутствие интерметаллических соединений Ni-Sn на поверхности разлома паяного соединения представлено на рис. 4. Также в процессе исследований было показано, что приложение низкого напряжения к выводам QFP-компонента, припаянным к контактным площадкам, также служит инструментом дальнейшего роста коррозии на отдельных КП или отдельных регионах этих площадок [1118]. На рис. 5 показаны последовательные стадии индуцированной коррозии Ni на контактных площадках, покрытых ENIG, с образованием дефекта черной контактной площадки (слой золота удален травлением) [18].

Рис. 4. Снимок разрушенного паяного соединения с присутствием на поверхности разлома интерметаллических соединений Ni-Sn, сделанный с помощью сканирующего электронного микроскопа и энергорассеивающей рентгеновской спектроскопии. Фото из [18]  

Рис. 5. Снимок последовательных стадий индуцированной коррозии Ni на контактных площадках, покрытых ENIG (по часовой стрелке). Фото из [18]  

Ряд других исследований показывает, что повышенная активность иммерсионного золочения также может быть вызвана уровнем pH, а также примесями, образующимися из-за разрушения паяльной маски [18].

Институт исследований технологий межсоединений (Interconnect Technology Research Institute, ITRI) также провел исследование данного дефекта. Было отмечено, что ни один из параметров процесса нанесения покрытия не был идентифицирован в качестве единственной причины возникновения черных контактных площадок, хотя некоторые химические составы показали себя лучше прочих. Также было обнаружено, что дефект проявлялся в случае электрического контакта маленьких КП и большой КП и/или группы маленьких КП. В качестве объяснения было предложено то, что такое подключение дает эффект гальванического элемента, сходного с приложением небольшого напряжения и проявлением повышенной активности иммерсионного золочения в исследованиях, проведенных HADCO [11].

Трещины на поверхности разлома паяного соединения, подобные корке растрескавшейся грязи (т.н. «mud cracks»), свидетельствуют о недостатке интерметаллических соединений Ni-Sn в результате связывания никеля в соединение Ni-P. Такой случай показан на рис. 6, где на поверхности разлома паяного соединения присутствует весьма небольшое количество олова [18].

Рис. 6. Снимок высокого разрешения, сделанный с помощью сканирующего электронного микроскопа и демонстрирующий наличие черных контактных площадок. Фото из [18]  

Также дефект черной контактной площадки может быть вызван избыточным временем процесса пайки, в результате чего ускоряется образование интерметаллических соединений Sn-Ni и Sn-P [17].

Согласно [19], некоторые производители рекомендуют использовать не ограниченные паяльной маской контактные площадки для BGA-компонентов (non solder mask defined pads, NSMD), что дает возможность припою при формировании паяного соединения осуществлять адгезию не только к верхней плоскости площадки, но и к ее боковым поверхностям. Это дает некоторое упрочнение паяного соединения, но полностью не избавит от негативных последствий образования черных контактных площадок. Общая рекомендация для производителя в данном случае: правильный выбор поставщика печатных плат.