Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Petrakovich-radikaly.doc
Скачиваний:
13
Добавлен:
14.11.2019
Размер:
118.78 Кб
Скачать

Химия и физика жизни

«Природа, до того чужая, Вдруг — и раскрылась предо мной.»

Евгений Винокуров

Если в натуре все так и есть, как автор вообразил (между прочим, гипотеза позволяет автору, кроме достоверных источников, пользоваться и собственным воображением), то для чего-то ведь нужны «первому» эритроциту и механическое ускорение, и мощное, по местным масштабам, электронное возбуждение — для чего же?

Механическое ускорение движения эритроциту действительно необходимо, поскольку у него до самых сердечных камер никаких ускорителей большей не будет, кроме присасывающей силы сердечных сокращений (а они намного слабее силы сердечного «выброса») и сжатия и расширения легких при дыхании, но на функции капилляра последнее сказывается в малой степени — слишком мал капилляр для сил сжатия и расширения (растяжения).

И еще один аспект механического ускорения. Как уже было сказано, в момент ускорения эритроцит, скользя поршеньком, затягивает в просвет капилляра и часть непотребленного кислорода, и среди прочего — газ азот. Как известно, азот является инертным газом, доказано и его полное неучастие в обменных процессах в живом организме. В Большой Медицинской энциклопедии об азоте, как газе, сказано, что его роль в физиологических условиях окончательно не выяснена, но у водолазов, не прошедших декомпрессию после погружения, он может вызвать кессонную болезнь.

О кессонной болезни распространяться нет необходимости — все знают, что это такое. Но вот если вообразить себе человека, у которого в тех же условиях, что и у нас, в крови инертного газа азота вдруг стало меньше, чем обычно, — что станет с этим человеком? А станет вот что: малейшее повреждение кровеносного сосуда (например, иглой для внутривенного введения лекарств, при мелких порезах, не говоря уж об операциях, при которых пересекается множество сосудов) вызовет моментальное засасывание воздуха в просвет сосуда. Воздушная эмболия! Наше счастье, что такого рода воздушную эмболию на Земле никто и никогда не наблюдал, потому что роль газового наполнителя крови и тем самым нашего спасителя от воздушных эмболии при случайных повреждениях сосудов взял на себя инертный газ азот. Очень к тому же хорошо, что этот газ — инертный, что он не расходуется в процессе обмена — тем самым газовая константа крови сохраняется в одинаковой степени в любой части нашего тела и в любом кровеносном сосуде. Вот и «роль не выяснена» … Но это еще не все.

При обычной для живого организма температуре азот воздуха действительно является инертным газом, но, как показали недавние исследования американских ученых, в двигателях внутреннего сгорания при температуре выше 1000 С азот воздуха соединяется с кислородом воздуха, при этом образуются оксиды азота — вещества, обладающие довольно высокой химической активностью. Если исходить из представляемой гипотезы о дыхании, то и в живом организме в «эпицентре» микровзрыва на миллионные доли секунды может достигаться такая же высокая температура без повреждения, из-за краткости и маломасштабности, тканевых структур, а это означает, что в принципе и в живом организме из вдыхаемого воздуха возможен синтез химически активных соединений азота.

Химикам известно, что в водном растворе оксиды азота преобразуются в нитраты — а чем не водный раствор та же плазма крови? Или внутриклеточная жидкость?

Уже в водном растворе возможны дальнейшие химические преобразования нитратов вплоть до образования аминокислот — а они, аминокислоты, и есть те самые «кирпичики», из которых формируются молекулы собственных белков. Фантастика: в живом организме белковые молекулы образуются буквально из ничего — из воздуха!

Некоторые исследователи считают, что первые молекулы белка на Земле образовались именно таким образом — из азота и кислорода воздуха под воздействием электрических разрядов и высоких температур. Если это так, то следует считать, что этот «сверхстаринный» продуктивный процесс образования белка сохраняется в нас и по сию пору, хотя большинство исследователей такую возможность отрицают.

Какова же роль электронною возбуждения, возникающего в легочном капилляре в момент вспышки-взрыва? Его роль просматривается четко: путем индукции побудить эритроциты к свобод-норадикальному окислению «собственных» (мембранных) ненасыщенных жирных кислот или, по-другому, израсходовав небольшое количество энергии на взрыв, побудить эритроциты к выработке значительного количества тепла и электричества для нужд всего организма. Вспомним: для свобод-норадикального окисления ненасыщенных жирных кислот добавочная энергия необходима лишь в самом начале процесса, далее процесс развивается по цепной (с участием железа — по цепной разветвленной) реакции уже без потребления энергии — наоборот, с выработкой ее в большом количестве в виде тепла и электричества, В этом аспекте понятна и роль кислорода воздуха: он прямо участвует в инициировании этого процесса, без кислорода стал бы невозможен взрыв, без взрыва не было бы электронного возбуждения, без электронного возбуждения не началось бы свободнорадикальное окисление ненасыщенных жирных кислот в мембранах эритроцитов, остановилась бы выработка кислорода и потенциальной энергии — остановилась бы жизнь. Поэтому воздействие кислорода воздуха на энергопродуцирующий процесс в живом организме можно рассматривать с тех же позиций, с которых рассматривается воздействие солнечного луча на фотосинтез у растений.

Специалисты считают, что в организме теплокровного животного «рекордсменом» по теплопродукции в единицу времени на единицу массы является бурый жир, в состав которого входят ненасыщенные жирные кислоты и железо, которое придает жиру характерную бурую окраску. Бурый жир окисляется по цепной разветвленной реакции, при этом тепла выделяется столько, что его хватает, например, пингвинам не только для согревания собственного тела в лютый мороз, но и для высиживания на этом лютом морозе яиц.

Однако бурый жир в значительных количествах в виде отдельных скоплений обнаруживается только у зимоспящих животных и у морских млекопитающих. У человека он тоже обнаружен, но лишь в отдельных участках и в микроскопических дозах. Между тем, если рассматривать эритроциты с позиций их химического состава, то выяснится, что они практически сплошь состоят из бурого жира, поскольку и ненасыщенные жирные кислоты, и железо в них преобладают, а железа в эритроцитах даже намного больше, чем в буром жире. Если принять к сведению, что свободнорадикальное окисление ненасыщенных жирных кислот сопровождается не только выработкой тепла, но и электронов, то эритроциты, в которых этот процесс может с участием в качестве катализатора меняющих свою валентность атомов железа протекать бурно, по цепному разветвленному виду, — то эритроциты следует признать главными в нашем организме производителями тепла и электричества. Отсюда причину различных лихорадок и других температурных реакций в нашем организме следует искать не только в возбудителях инфекций, но и в тех изменениях, которые претерпевают при этом эритроциты.

 

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]