
- •Содержание
- •Глава 1. Предмет и задачи психофизиологии 5
- •Глава 2. Методы психофизиологии 26
- •Предмет, задачи и методы психофизиологии Глава 1. Предмет и задачи психофизиологии
- •1.1.Определение психофизиологии
- •1.2.Проблема соотношения мозга и психики
- •1.3.Современные представления о соотношении психического и физиологического
- •1.4.Системные основы психофизиологии
- •Системный подход к проблеме индивидуальности
- •Информационная парадигма
- •Межнейронное взаимодействие и нейронные сети
- •Литература
- •Глава 2. Методы психофизиологии
- •2.1.Методы изучения работы головного мозга
- •Электроэнцефалография
- •Вызванные потенциалы головного мозга
- •Топографическое картирование электрической активности мозга
- •Компьютерная томография
- •Регистрация импульсной активности нейронов
- •Методы воздействия на мозг
- •2.2. Электрическая активность кожи
- •2.3. Показатели работы сердечно-сосудистой системы
- •2.4. Показатели активности мышечной системы
- •2.5. Показатели активности дыхательной системы
- •2.6. Реакции глаз
- •2.7. Детектор лжи
- •2.8. Выбор методик и показателей
- •Литература
- •Психика и мозг: результаты и перспективы исследований (д. И. Дубровский//Психол. Журнал, том 11, № 6, 1990)
- •Физикалистский подход
- •Бихевиоральный подход
- •Функционалистский подход
- •1.2.Реактивность
- •1.3.Активность
- •1.4.Эклектика в психологии и психофизиологии
- •2. Теория функциональных систем
- •2.1. Что такое система?
- •2.2. Результат — системообразующий фактор
- •2.3. Временной парадокс
- •2.4. Целенаправленность поведения
- •2.5. Опережающее отражение
- •2.6. Теория п.К. Анохина как целостная система представлений
- •2.7. Системные процессы
- •2.8. Поведение как континуум результатов
- •3. Системная детерминация активности нейрона
- •3.1. Парадигма реактивности: нейрон, как и индивид, отвечает на стимул
- •3.2. Парадигма активности: нейрон достигает «результат»
- •3.3. «Потребности» нейрона и объединение нейронов в систему
- •4. Субъективность отражения
- •4.1. Активность как субъективное отражение
- •5.2. Варианты традиционного решения психофизиологической проблемы
- •5.3. Системное решение психофизиологической проблемы
- •5.4. Задачи системной психофизиологии и ее значение для психологии
- •5.5. Взаимосодействие коррелятивной и системной психофизиологии
- •6.1. Органогенез и системогенез
- •6.2. Научение как реактивация процессов развития
- •6.3. Научение — селекция или инструкция?
- •6.4. Системная специализация и системоспецифичность нейронов
- •7. Структура и динамика субъективного мира человека и животных
- •7.1. Историческая детерминация уровневой организации систем
- •7.2. Поведение как одновременная реализация систем разного «возраста»
- •7.3. Структура субъективного мира и субъект поведения
- •7.4. Модифицируемость системной организации поведенческого акта в последовательных реализациях
- •7.5. Человек и животное: системная перспектива
- •7.6. Направления исследований в системной психофизиологии
Регистрация импульсной активности нейронов
Нейрон — нервная клетка, через которую передается информация в организме, представляет собой морфофункциональную единицу ЦНС человека и животных. При достижении порогового уровня возбуждения, поступающего в нейрон из разных источников, он генерирует разряд, называемый потенциалом действия. Как правило, нейрон должен получить много приходящих импульсов, прежде чем в нем возникнет ответный разряд. Все контакты нейрона (синапсы) делятся на два класса: возбудительные и тормозные. Активность первых увеличивает возможность разряда нейрона, активность вторых снижает. По образному сравнению ответ нейрона на активность всех его синапсов представляет собой результат своеобразного «химического голосования». Частота ответов нейрона зависит от того, как часто и с какой интенсивностью возбуждаются его синаптические контакты, но здесь есть свои ограничения. Генерация импульса (спайков) делает нейрон недееспособным примерно на последующие 0,001 с. Этот период называется рефракторным, он нужен для восстановления ресурсов клетки. Период рефракторности ограничивает частоту разрядов нейронов. Частота разрядов нейронов колеблется в широких пределах, по некоторым данным от 300 до 800 импульсов в секунду.
Регистрация ответов нейронов. Активность одиночного нейрона регистрируется с помощью так называемых микроэлектродов, кончик которых имеет от 0,1 до 1 микрона в диаметре. Специальные устройства позволяют вводить такие электроды в разные отделы головного мозга, в таком положении электроды можно зафиксировать и, будучи соединены с комплексом усилитель — осциллограф, они позволяют наблюдать электрические разряды нейрона.
С помощью микроэлектродов регистрируют активность отдельных нейронов, небольших ансамблей (групп) нейронов и множественных популяций (т. е. сравнительно больших групп нейронов). Количественная обработка записей импульсной активности нейронов представляет собой довольно сложную задачу особенно в тех случаях, когда нейрон генерирует множество разрядов и нужно выявить изменения этой динамики в зависимости от каких-либо факторов. С помощью ЭВМ и специального программного обеспечения оцениваются такие параметры как частота импульсации, частота ритмических пачек или группирования импульсов, длительность межстимульных интервалов и др. Анализ функциональных характеристик активности нейронов в сопоставлении с поведенческими реакциями проводится на достаточно длительных отрезках времени от 25—30 с и выше.
Активность нейронов регистрируют у животных в эксперименте, у человека в клинических условиях. Ценными объектами исследования функциональных свойств нейронов служат крупные и относительно доступные нейроны некоторых беспозвоночных. Многочисленные факты, касающиеся нейрональной организации поведения, были получены при изучении импульсной активности нейронов в экспериментах на кроликах, кошках и обезьянах.
Исследования активности нейронов головного мозга человека осуществляются в клинических условиях, когда пациентам с лечебными целями вводят в мозг специальные микроэлектроды. В ходе лечения для полноты клинической картины больные проходят психологическое тестирование, в процессе которого регистрируется активность нейронов. Исследование биоэлектрических процессов в клетках, сохраняющих все свои связи в мозге, позволяет сопоставлять особенности их активности с результатами психологических проб, с одной стороны, а также с интегративными физиологическими показателями (ЭЭГ, ВП, ЭМГ и др.).
Последнее особенно важно, потому что одной из задач изучения работы мозга является нахождение такого метода, который позволил бы гармонически сочетать тончайший анализ в изучении деталей его работы с исследованием интегральных функций. Знание законов функционирования отдельных нейронов, конечно, совершенно необходимо, но это только одна сторона в изучении функционирования мозга, не вскрывающая, однако, законов работы мозга как целостной функциональной системы.