- •Введение в науки о жизни
- •Оглавление:
- •Часть 1. Введение. Повторение "азов". Мутации, изменчивость (лекции 1-4) Зачем экономистам биология?
- •Широкое образование и общее развитие.
- •Повторение «азов» из школьной программы
- •Мутации и отбор
- •«Белковая вселенная»
- •Изменчивость
- •Эксперимент, подтверждающий положительное влияние скрытой изменчивости на скорость приспособления к новым условиям.
- •Помехоустойчивость на уровне генома: зачем нужны «ненужные гены»?
- •Завершение повторения азов
«Белковая вселенная»
Количество возможных белков – невообразимо велико. Пептидов длиной в 20 аминокислот существует 2020≈1026. Нормальный белок состоит из нескольких сотен аминокислот. 200 аминокислот – это считается небольшой белок. Таких белков существует примерно 10260. По сравнению с этим числом число элементарных частиц во вселенной – неизмеримо ничтожно. Громадная «белковая вселенная», многомерное пространство всех возможных аминокислотных последовательностей.
Это значит, что «найти» в этом пространстве какую-то одну конкретную аминокислотную последовательность методом случайного поиска – абсолютно нереально. Это неизмеримо труднее, чем найти во вселенной, двигаясь наугад, какой-то один конкретный электрон.
Данное обстоятельство иногда используется креационистами – людьми, которые отрицают эволюцию – в качестве аргумента против естественного происхождения всего живого. Они утверждают, что, поскольку вероятность случайно наткнуться на нужный белок методом слепого поиска неизмеримо мала, следовательно, жизнь была преднамеренно сотворена Богом.
В этом рассуждении 2 ошибки.
Первая ошибка: Не нужно искать конкретную последовательность, потому что одну и ту же функцию может успешно выполнять огромное множество разных белковых молекул.
Вторая ошибка: Эволюция - не случайный поиск. Случайны только мутации, однако отбор – направленный процесс, представляющий собой прямую противоположность слепому случаю.
Мы должны оба этих положения разобрать в деталях и очень хорошо понять.
На этом слайде – изображение нашей физической вселенной, но давайте представим, что эта белковая вселенная, пространство всех возможных белков.
Можно представить себе области белковой вселенной, где находятся полезные функциональные белки, в виде светящихся точек, островков, или облаков.
ДЕМОНСТРАЦИЯ ПРОГРАММЫ Positive_selection.mdb «Отбор может найти любую точку в белковой вселенной». Показать:
1) что существует оптимальная скорость мутирования, при которой отбор создает «идеальную» последовательность быстрее всего.
2) Если она выше оптимума, отбор не может добраться до «идеальной» последовательности. Результат: хаотические блуждания на некотором удалении от «идеала» (нет неуклонного удаления, но нет и приближения). Если она ниже оптимума, достижение «идеала» занимает больше времени.
Уроки модели:
В отличие от алгоритма случайных блужданий, алгоритм «мутации + отбор» (или «избирательное размножение удачных вариаций») позволяет найти любую точку в «белковой вселенной»
Необходимое условие: поиск должен начинаться из такой области «вселенной», в которой уже чувствуется «притяжение» данного оптимума приспособленности (т.е. функция, для выполнения которой лучше всего подходит данная «идеальная» последовательность, должна хоть чуть-чуть выполняться всеми белками, находящимися в этой области). В пределах этой области приближение к «идеалу» поддерживается отбором, удаление – карается.
Существует оптимальная скорость мутирования.
Если скорость мутирования выше оптимума, эволюционирующая последовательность будет блуждать на некотором (примерно постоянном) расстоянии от «идеала». Расстояние зависит от баланса (соотношения) темпов мутирования и эффективности отбора.
Если скорость мутирования ниже оптимума, эволюционирующая последовательность достигнет «идеала», но ей потребуется на это больше времени.
Итак, мы поняли, что алгоритм «мутации + отбор» - очень мощный. Осталось выяснить, выполняется ли условие, отмеченное на слайде.
Белковая Вселенная. Напомню: мы представляем себе функциональные белки в виде светлых точек, бессмысленные, нефункциональные последовательности – в виде черных. Насколько точно нужно подобрать аминокислотную последовательность белка, чтобы белок пусть плохо, но все-таки справился с той или иной полезной функцией? Иначе говоря, насколько часто в гигантском пространстве белковой вселенной встречаются белки, способные выполнять какие-то полезные (для живых организмов) функции, и насколько велики облака света, соответствующие разным функциям?
Если бы «островки функциональности» встречались очень редко и были бы очень маленькими и изолированными, если бы они были отделены друг от друга бескрайними темными пространствами, то жизнь на белковой основе, скорее всего, оказалась бы невозможной.
Однако реальная белковая вселенная не такова.
Есть два серьезных аргумента в пользу того, что в «белковой вселенной» очень много света и светлые отровки велики и не изолированны друг от друга.
1) Аргумент первый: синтез случайных коротких пептидов (по неск. дестяков аминокислот) – практически все основные функциональные группы, соответствующие так называемым «надсемействам» белков. В том числе - все базовые типы каталитической активности. Эффективность этих «микроферментов» мала, но это уже не важно: механизм естественного отбора прекрасно умеет постепенно доводить до совершенства любую существующую функцию.
2) Аргумент второй: практически все известные функциональные белки допускают оргомную вариабельность своей аминокислотной последовательности. Иными словами, чтобы хорошо выполнять какую-то функцию, белку не нужно иметь какую-то строго определенную последовательность аминокислот. Мы можем в этом убедиться, сравнив белки с одинаковой функцией, взятые у разных организмов.
Рассказать про ГЕНБАНК и БЛАСТ. Цитохром С. Человек и бык, человек и растение, человек и бактерия
Вывод: чтобы быть функциональным, рабочим цитохромом С, белку вовсе не обязательно иметь какую-то строго определенную аминокислотную последовательность. Достаточно иметь некий небольшой и довольно расплывчатый аминокислотный «мотив», определяющий структуру активного центра. В пределах сверхгромадной белковой вселенной существует меньшая, но все равно громадная область, соответствующая функциональным цитохромам С.
Пересадки: Может быть, эти разные цитохромы С приспособлены к своим организмам, к своему молекулярному окружению? Отчасти – да, но многочисленные опыты по пересадкам показывают, что этим можно объяснить лишь небольшую часть вариабельности. Как правило, пересаженные белки нормально работают в других организмах.
Пример 1: PAX6 (мышиный ген пересадили в мушиный эмбрион, и он сработал: вызвал развитие глаза).
Пример 2: Антифризы пересадили из рыб в помидоры.
Таким образом, аминокислотную последовательность белка можно менять в очень широких пределах, не нарушая его функции. Это означает, что белки толерантны к мутациям. Многие мутации, меняющие белок, не вредят его функциональности (или вредят лишь слабо).
В этом проявляется одно из важнейших свойств биологических систем: помехоустойчивость, способность противостоять всевозможным помехам.
Существует два главных типа помех, с которыми живым существам приходится сталкиваться постоянно. Это, во-первых, помехи внутренние – мутации, во-вторых, помехи внешние – изменения среды. Ни того, ни другого невозможно избежать.
Неустойчивые системы обязательно будут отсеиваться отбором. Рост помехоустойчивости живых систем – одно из абсолютно неизбежных следствий естественного отбора.
Важно, что, повысив устойчивость к какому-то одному типу помех, мы, как правило, автоматически повышаем устойчивость и к другим видам помех. Простейший пример: плотные кожные покровы защищают от высыхания, делая организм устойчивым к перепадам влажности. Но они одновременно защищают и от паразитов и патогенных микробов, проникающих через покровы, и от физических повреждений. Что касается белков, то про них, например, известно что устойчивость к мутациям тесно связана с устойчивостью к перепадам температур. Для белка «устойчивость» - это прежде всего устойчивость его пространственной конфигурации (того, как цепочка аминокислот сворачивается в рабочую трехмерную структуру). Если эта структура устойчива к мутациям, то она, скорее всего, будет устойчива и к перепадам температуры, и наоборот. Таким образом. вырабатывая частное приспособление для защиты от каких-то одних помех, живая система, как правило, автоматически приобретает более универсальную защиту от более широкого круга помех.
------------------------------------------------