
- •Часть 1
- •Введение
- •Глава 1 элементы линейной алгебры §1. Определители Пример 1.1.
- •Пример 1.4.
- •Пример 1.5.
- •Пример 1.6.
- •Пример 2.2
- •Пример 2.3
- •Пример 2.4
- •Пример 2.5
- •Задания для самостоятельного решения. Задание 2.1. Написать разложение вектора по векторам
- •Задание 2.2. Найти косинус угла между векторами и
- •Задание 2.3 Вычислить площадь параллелограмма, построенного на векторах и
- •Задание 2.4. Определить коллинеарны ли векторы и , построенные по векторам и ?
- •Задание 2.5. Вычислить объем тетраэдра с вершинами в точках и его высоту, опущенную из вершины на грань .
- •Глава 3 элементы аналитической геометрии §1. Прямая на плоскости Пример 3.1
- •Задания для самостоятельного решения. Задание 3.1.
- •§2. Плоскость в пространстве Пример 3.2
- •Пример 3.7
- •Пример 3.8
- •Пример 3.10
- •Пример 3.11
- •Пример 3.12
- •Пример 3.13
- •Пример 3.14
- •Глава 4 введение в анализ § 1. Пределы числовых последовательностей Пример 4.1
- •Задания для самостоятельного решения. Задание 4.1 Вычислить пределы числовых последовательностей.
- •§ 2. Пределы функций Пример 4.2 Вычислить пределы дробно-рациональных функций:
- •Пример 4.3
- •Задания для самостоятельного решения. Задание 4.2. Вычислить пределы дробно-рациональных функций
- •Задание 4.3. Вычислить пределы иррациональных функций
- •§ 3. Замечательные пределы. Сравнение бесконечно малых. Пример 4.4
- •Пример 4.5
- •Пример 4.6
- •Задания для самостоятельного решения. Задание 4.4. Вычислить пределы, используя первый замечательный предел и его следствия.
- •Задание 4.5. Вычислить пределы, используя второй замечательный предел и его следствия.
- •Задание 4.6 Определить порядок относительно данной функции, бесконечно малой при .
- •§ 4. Непрерывность функций Пример 4.7
- •Пример 4.8
- •Задания для самостоятельного решения. Задание 4.7. Установить, является ли данная функция непрерывной или разрывной для каждого из данных значений . Сделать схематический чертёж.
- •Пример 5.1
- •Пример 5.2
- •Задание 5.2.
- •Задание 5.3.
- •Задание 5.4.
- •Задание 5.5.
- •Задание 5.6.
- •Задание 5.7.
- •Задание 5.8.
- •Задание 5.9.
- •Задание 5.10.
- •Задание 5.11.
- •Задание 5.12.
- •Задание 5.13.
- •Задание 5.15.
- •Задание 5.16
- •§ 3. Дифференцирование функций, заданных неявно и параметрически Пример 5.17
- •Задание 5.18. Найти и для функций, заданных параметрически.
- •§4. Правило лопиталя Пример 5.19
- •Пример 5.20
- •Задания для самостоятельного решения. Найти указанные пределы, используя правило Лопиталя. Задание 5.19
- •Задание 5.20.
- •§ 5. Полное исследование функций
- •Пример 5.21
- •Пример 5.22
- •Пример 5.23
- •По данным исследования построим график функции .
- •Задания для самостоятельного решения. Провести полное исследование функций и построить их графики Задание 5.21.
- •Задание 5.22.
- •Задание 5.23.
- •§ 6. Применение дифференциала для приближенного вычисления Пример 5.24
- •Пример 5.25
- •Задание 5.25.
- •Литература
- •Содержание
- •Часть 1.
Задание 5.23.
1. |
|
2. |
|
3. |
|
4. |
|
5. |
|
6. |
|
7. |
|
8. |
|
9. |
|
10. |
|
11. |
|
12. |
|
13. |
|
14. |
|
15. |
|
16. |
|
17. |
|
18. |
|
19. |
|
20. |
|
21. |
|
22. |
|
23. |
|
24. |
|
25. |
|
26. |
|
27. |
|
28. |
|
29. |
|
30. |
|
§ 6. Применение дифференциала для приближенного вычисления Пример 5.24
Найти приближенно
и оценить допущенную относительную
погрешность (с точностью до двух знаков
после запятой).
Решение:
Воспользуемся формулой для приближенных вычислений:
.
Полагая
,
найдем
и в соответствии с формулой для
приближенных вычислений получим
.
Учитывая, что
,
возьмем
и
.
Тогда
Относительная
погрешность может быть вычислена (при
достаточно малых
)
по формуле
.
Тогда
.
Ответ: 0,72;
.
Пример 5.25
Найти приближенно
и оценить допущенную относительную
погрешность (с точностью до двух знаков
после запятой).
Решение:
Воспользуемся формулой для приближенных вычислений:
.
Полагая
,
найдем
и в соответствии с формулой для
приближенных вычислений получим
.
За
возьмем число, ближайшее к 33, но чтобы
было известно значение
,
при этом значение
должно быть достаточно малым. Очевидно,
необходимо взять
,
.
Итак,
Относительная погрешность
.
Ответ: 2,01;
.
Задания для самостоятельного решения.
С помощью дифференциала приближенно вычислить данные величины и оценить допущенную относительную погрешность (с точностью до двух знаков после запятой).
Задание 5.24.
1. |
|
2. |
|
3. |
|
4. |
|
5. |
|
6. |
|
7. |
|
8. |
|
9. |
|
10. |
|
11. |
|
12. |
|
13. |
|
14. |
|
15. |
|
16. |
|
17. |
|
18. |
|
19. |
|
20. |
|
21. |
|
22. |
|
23. |
|
24. |
|
25. |
|
26. |
|
27. |
|
28. |
|
29. |
|
30. |
|
Задание 5.25.
1. |
|
2. |
|
3. |
|
4. |
|
5. |
|
6. |
|
7. |
|
8. |
|
9. |
|
10. |
|
11. |
|
12. |
|
13. |
|
14. |
|
15. |
|
16. |
|
17. |
|
18. |
|
19. |
|
20. |
|
21. |
|
22. |
|
23. |
|
24. |
|
25. |
|
26. |
|
27. |
|
28. |
|
29. |
|
30. |
|