- •Тема 1. Комплексный чертеж точки
- •Тема 2. Комплексный чертеж прямой линии
- •Тема 3. Взаимное расположение прямых в пространстве
- •Тема 4. Плоскость. Взаимное положение прямой и плоскости
- •Тема 5. Преобразование комплексного чертежа способом замены плоскостей проекций
- •Тема 6. Многогранники
- •Тема 7. Пересечение поверхностей вращения плоскостью и прямой линией
- •Тема 8. Построение линии пересечения поверхностей
- •Библиографический список
Тема 2. Комплексный чертеж прямой линии
8
.
Построить профильную проекцию отрезка
АВ
(рис. 12, а).
а б
Рис. 12
8.1. Показываем линии связи для профильной и фронтальной проекций (см. задачу 1 п. 1.3), рис. 12, б.
8.2. На профильной плоскости проекций показываем проекцию наиболее удаленной точки (предварительно определив положение точек А и В на горизонтальной плоскости проекций, см. задача 6). Теперь все дальнейшие построения будут производиться правее этой точки.
8.3. На горизонтальной проекции определяем разность координат вдоль оси Y – Y. (см. задачу 7)
8.4. Откладываем Y от профильной проекции точки В3 вправо вдоль линии связи и показываем профильную проекцию точки В (В3).
8.5. Соединяем полученные проекции и получаем третью проекцию [АВ].
8
,
а.
Построить профильную проекцию отрезка
АВ,
горизонтальную проекцию CD
и фронтальную проекцию отрезка EF
(рис.
13).
Рис. 13
9. Определить натуральную величину отрезка АВ (рис. 14, а) и углы наклона его к плоскостям проекций. Применить правило прямоугольного треугольника.
а б
Рис. 14
9.1. Проводим линию, перпендикулярную к одной из проекций отрезка АВ. Перпендикуляр опускаем из проекции любой точки (А или В), рис. 14, б.
9.2. Откладываем на перпендикуляре отрезок равный разности расстоя-ний от точек отрезка до соответствующей плоскости проекций: – Dx (до П3), Dy (до П2) или Dz (до П1) – (разности координат точек вдоль оси перпендикулярной к плоскости проекций, на которой строится прямоугольный треугольник).
9.3. Строим прямоугольный треугольник, один катет которого будет проекция отрезка, а второй катет – разность координат. Длина гипотенузы будет равна натуральной величине отрезка (правило прямоугольного треугольника) [29].
9.4. Угол, противолежащий катету разности координат, будет углом наклона к соответствующей плоскости проекций: – угол наклона к горизонтальной плоскости проекций; – угол наклона к фронтальной плоскости проекций; – угол наклона к профильной плоскости проекций.
9.5. При построении прямоугольного треугольника для определения угла наклона к плоскости П3 необходимо построить профильную проекцию отрезка (см. задачу 7).
9
,
а.
Определить натуральную величину отрезка
АВ
(рис. 15) и углы наклона его к плоскостям
проекций. Воспользоваться правилом
прямоугольного треугольника.
Рис. 15
10. Построить прямоугольную изометрическую проекцию заданной горизонтали [30] (рис. 16). Определить по изометрической проекции углы наклона горизонтали к плоскостям проекций и показать их на эпюр. Записать свойства горизонтальной прямой уровня (длина проекций в сравнении с натуральной величиной, углы наклона к плоскостям проекций, положение относительно координатных осей).
Р
ис.
16
10.1. Для построения изометрической проекции горизонтали необходимо указать еще одну точку В, принадлежащую прямой h.
Систему координат на эпюр проводим самостоятельно.
Свойства горизонтали: hIIП1; Ih1I=IhI; a=0; h2IIX Z; h3IIY z.
11. Построить прямоугольную изометрическую проекцию заданной фронтали [31] (рис. 17). Показать углы наклона фронтали к плоскостям проекций. Определить натуральную величину.
Свойства фронтали: fIIП2; If2I=IfI; =0; f1IIX Y; f3IIZ Y.
Рис. 17
1
2.
Построить прямоугольную горизонтальную
и изометрическую проекцию заданной
профильной
прямой уровня [31]
(рис. 18).
Указать свойства профильной прямой
уровня (длина проекций в сравнении с
натуральной величиной, углы наклона к
плоскостям проекций, положение
относительно координатных осей).
12.1. Проводим линию связи А2–А1 (задача 1, п., 1.3), на которой указываем положение горизонтальной проекции точки А.
12.2. Произвольно выберем профильную проекции точки В (В3). Остальные две проекции находим по правилам построения трех проекций (см задачи 7, 8)
1
2.3.
Свойства профильной прямой уровня:
pIIП3;
Ip3I=IpI;
=0;
p1IIY
и
X;
p2IIZ
и
X.
Рис. 18
1
3.
Достроить проекции отрезков. Определить
углы ,
,
горизонтальной прямой АВ
= 50 мм
(рис. 19, а),
профильной прямой CD
= 30 мм
(рис. 19, б).
а б
Рис. 19
13.1. Строим недостающие проекции прямой (см. задачи 10, 11).
13.2. Строим проекции отрезка АВ (рис. 20, а. Воспользуемся свойствами горизонтали: h2 x (через точку А2 проводим прямую) и Ih1I=IhI (на горизонтальной проекции откладываем отрезок IА1В1I=IАВI=50 мм); задача – рис. 20, б: согласно свойству профильной прямой уровня – IP3I=IPI откладываем на профильной проекции отрезок ICDI=IC3D3I=30 мм. Далее см. задачи 6, 7.
а б
Рис. 20
1
3,
а.
Через точку А
провести горизонтальный отрезок АВ,
а через точку С
профильный отрезок, CD,
имеющие
угол наклона к фронтальной плоскости
30
и длину 50 мм (рис. 21).
Рис. 21
1
4.
Построить в трех проекциях фронтальный
отрезок АВ
= 45 мм,
наклоненного к П3
под углом 60
(рис. 22). Положение проекций отрезка
выбрать самостоятельно.
Рис. 22
1
4.1.
Используя понятие о линиях связи (см.
задачу 1, п. 1.3), показываем положение
проекций точки А:,
А1,
А2
и А3.(рис.
23).
14. 2. Далее см. задачу 12.
Рис. 23
1 4, а. Построить в трех проекциях фронтальный отрезок АВ = 50 мм, наклоненный к П1 под углом 60 (рис. 24). Положение проекций отрезка выбрать самостоятельно.
Рис. 24
15. На отрезке АВ (рис. 25) определить точку С так, чтобы АС:СВ = 3:5. Задачу решить двумя способами.
15.1. Первый способ [13] (рис. 25, а): проведем через любую проекцию точки (А или В) линию под углом, отличным от 0 или 180, на которой отложим (при помощи циркуля или линейки) восемь равных частей. Далее проводим линию через точку третьего отрезка (от точки А), параллельную линии, соединяющей конец последнего отрезка с проекцией второй точки. Точка пересечения первой линии будет проекцией точки С. Выполнив аналогичные построения для второй проекции отрезка, получим вторую проекцию точки С.
1
5.2.
Второй способ (рис. 25, б):
строим профильную проекцию отрезка АВ
(задачу 7) и аналогично первому способу
находим профильную проекцию точки С.
Далее определяем горизонтальную и
фронтальную проекции точки С
(задачу 7).
а б
Рис. 25
1
5,
а.
Разделить графически отрезок СD
в отношении 2:4(рис. 26).
Рис. 26
1
6.
На прямой m
определить точку С,
удаленную от точки А
на 30 мм (рис. 27, а).
а б
Рис. 27
16.1. Для решения задачи построим произвольно профильную проекцию прямой m (рис. 27, б), на которой отложим 30 мм. Далее см. задачу 13.
1
6,
а.
На прямой m
определить точку С,
удаленную от точки А
на 30 мм (рис. 28). Построить горизонтальную
проекцию.
Рис. 28
17 . На прямой m определить точку С удаленную от точки А на 30 мм (рис. 29, а).
1
7.1.
Для решения задачи отметим на прямой m
проекции промежуточной точки В
(рис. 29, б) и определим натуральную
величину АВ
(см. задача 9), на линии которой отложим
натуральную величину АС,
по которой определим фронтальную и по
линиям связи (см. задачу 1 п. 1.3) горизонтальную
проекции точки С.
а б
Рис. 29
1
7,
а.
На прямой m
определить точку, С
удаленную от точки А
на 30 мм (рис. 30).
Рис. 30
18. Определить недостающие проекции точек К и L (см. задачи 6, 10, 13), принадлежащих горизонтали АВ.
1
8.1.
Первый способ (рис. 32, а)
основан на построении третьей проекции
отрезка (см. задачу 8).
1
Рис. 31
8.2.
Второй способ (рис. 32, б)
основан на построении пропорциональных
отрезков пу-тем построения подобных
треу-гольников [13] (см. задачу 15).
Р
ис.
32
1
8,
а.
Определить недостающие проекции точек
К
и L
(рис. 33)
Рис. 33
19. На прямоугольной изометрической проекции (рис. 34, а) показана горизонтально проецирующая прямая а. Показать ее проекции. Построить эпюр этой прямой (рис. 34, б). Записать свойства горизонтальной проецирующей прямой (длина, углы наклона к плоскостям проекций, положение относительно координатных осей).
1
9.1.
Выбираем произвольно две точки на этой
прямой и находим их проекции (см. задачу
1). Далее соединяем указанные точки
соответствующих проекций и получаем
проекции горизонтально проецирующей
прямой.
а б
Рис. 34
19.2. Так как горизонтально проецирующая прямая перпендикулярна горизонтальной плоскости проекций, то угол этой прямой с горизонтальной плоскостью будет равен 90. Относительно фронтальной и профильной плоскости проекций эта прямая будет располагаться параллельно, а значит, и угол между этой прямой и плоскостями будет равен 0 или 180 (рис. 35, а).
19.3. На эпюр (рис. 35, б) строим горизонтальную проекцию прямой (как проекцию точки А или В). Линии связи (см. п. 1.3.) горизонтальной и фронтальной проекции этих точек совпадут с фронтальной проекцией прямой. Профильная проекция будет параллельна оси z и иметь координату Y точки А или В.
1
9.4.
Свойства: аП2
и П3
и, перпендикулярна к П1.
a
=90,
bg=0180,
,
.
а б
Рис. 35
19, а. Построить три проекции горизонтально проецирующего отрезка длиной 25 мм (рис. 36).
Рис. 36
2
0.
На прямоугольной изометрической проекции
(рис. 37, а)
заданной фронтально проецирующей прямой
а показать
ее проекции. Построить эпюр этой прямой
(37, б).
Записать свойства горизонтальной прямой
уровня (длина, углы наклона к плоскостям
проекций, положение относительно
координатных осей).
а б
Рис. 37
20.1. Выбираем произвольно две точки на прямой а (рис. 38, а) и находим их проекции (см. зад. 1). Далее соединяем указанные точки, соответствующих проекций и получаем проекции фронтально проецирующей прямой.
2
0.2.
Так как фронтально проецирующая прямая
перпендикулярна фронтальной плоскости
проекций, то угол этой прямой с фронтальной
плоскостью будет равен 90.
Относительно горизонтальной и профильной
плоскости проекций эта прямая будет
располагаться параллельно, а значит, и
угол между этой прямой и плоскостями
будет равен 0 или 180.
а б
Рис. 38
20.3. На эпюр (рис. 38, б) строим проекции прямой (как проекцию точки А или В). Линия связи (см., задачу 1 п. 1.3.) фронтальной, горизонтальной и профильной проекций этих точек совпадут с горизонтальной и профильной проекцией прямой.
20.4.
Свойства: а
П1
и П3
и перпендикулярна к П2.
= 90,
g
= 0
180,
,
.
20, а. Построить три проекции фронтально проецирующего отрезка длиной 25 мм (рис. 39).
Рис. 39
2
1.
На прямоугольной
изометрической проекции заданной
профильно проецирующей прямой показать
ее проекции (рис. 40, а).
Построить эпюр этой прямой (рис. 40, б).
Записать свойства горизонтальной прямой
уровня (длина, углы наклона к плоскостям
проекций, положение относительно
координатных осей).
а б
Рис. 40
2
1.1.
Выбираем произвольно точку А
(рис. 41, a)
на прямой а
и находим
её проекцию (см. задача 1). Вторая точка
В
лежит в плоскости П3
(точка пересечения прямой с профильной
плоскостью). Далее соединяем указанные
точки соответствующих проекций и
получаем проекции профильно проецирующей
прямой.
21.2. Так как профильно проецирующая прямая перпендикулярна профильной плоскости проекций, то угол этой прямой с этой плоскостью будет равен 90. Относительно горизонтальной и профильной плоскости проекций эта прямая будет располагаться параллельно, а значит, и угол между этой прямой и плоскостями будет равен 0 или 180.
2
1.3.
На эпюр (рис. 41, б)
строим проекции прямой (как проекцию
точки А
или В).
Линии связи (см. задачу 1 п. 1.3.) фронтальной
и профильной проекций этих точек совпадут
с фронтальной и профильной проекцией
прямой.
а б
Рис. 41
21.4.
Свойства: аП1
и П2
и перпендикулярна к П3,.
= 90,
b
= 0
180,
,
.
21, а. Построить три проекции профильно проецирующего отрезка длиной 25 мм.
Контрольные вопросы
1. Изображение прямой на комплексном чертеже.
2. Как изображается прямая общего положения и как она располагается по отношению к плоскостям проекций? Показать на примере.
4. Какие существуют прямые частного положения?
5. Прямые уровня и их свойства, изображение на комплексном чертеже.
6. Проецирующие прямые, их свойства.
7. Определение натуральной величины прямой общего положения и углов наклона ее к плоскостям проекций методом прямоугольного треугольника.
8. Определение натуральной величины и углов наклона ее к плоскостям проекций:
а) прямой уровня
б) проецирующей прямой.
