
- •По курсу общей физики молекулярная физика термодинамика
- •Введение
- •1. Статистический и термодинамический методы исследования вещества.
- •Тема 1. Основы молекулярно-кинетической теории газов
- •2. Идеальный газ. Параметры состояния идеального газа.
- •3. Основное уравнение кинетической теории газов.
- •4. Средняя кинетическая энергия поступательного движения молекул. Температура. Закон Дальтона.
- •5. Газовые законы. Уравнение Менделеева-Клапейрона.
- •6. Распределение скоростей молекул по Максвеллу.
- •7. Идеальный газ в силовом поле. Барометрическая формула. Закон распределения Больцмана.
- •8. Распределение энергии по степеням свободы.
- •Решение задач по теме 1. Примеры решения задач.
- •Задачи для самостоятельного решения.
- •Тема 2. Явления переноса в газах
- •9. Понятия о явлениях переноса. Средняя длина свободного пробега, эффективный диаметр молекул.
- •10. Диффузия.
- •11. Вязкость (внутреннее трение). Теплопрводность.
- •Тема 3.Основы термодинамики
- •12. Основные термодинамические понятия. Внутренняя энергия термодинамической системы.
- •13. Первое начало термодинамики. Работа, совершаемая газом при изменениях объема.
- •14. Теплоемкость газов. Уравнение Майера. Теплоемкость идеального двухатомного газа.
- •15. Первое начало термодинамики в изопроцессах.
- •16. Адиабатный процесс.
- •17. Круговой процесс. Тепловая машина.
- •18. Второе начало термодинамики. Обратимые и необратимые процессы.
- •19. Цикл Карно.
- •20. Энтропия. Приведенная теплота.
- •21. Изменение энтропии при некоторых процессах.
- •Решение задач по теме 3.
- •Задачи для самостоятельного решения.
- •Тема 4. Реальные газы и жидкости
- •22. Реальные газы. Уравнение Ван-дер-Ваальса.
- •23. Внутренняя энергия реального газа.
- •24. Свойства жидкого состояния вещества.
- •25. Поверхностный слой. Поверхностная энергия. Поверхностное натяжение.
- •26. Явления на границе жидкости и твердого тела.
- •27. Давление под искривленной поверхностью жидкости. Капиллярность.
- •28. Равновесие фаз. Фазовые переходы. Диаграмма состояния.
- •Решение задач по теме 4.
- •Задачи.
- •Ответы.
- •Оглавление.
6. Распределение скоростей молекул по Максвеллу.
Молекулы идеального газа совершают беспорядочное тепловое движение. Ввиду полной беспорядочности движения молекул и огромного их числа нет возможности судить о скорости каждой молекулы в любой момент времени. Возможно определить лишь число молекул, скорости которых лежат в определенном интервале скоростей.
Теоретически задачу о распределении молекул идеального газа по скоростям поступательного движения решил Максвелл. Он показал, что число молекул, имеющих малые скорости и большие скорости относительно мало. Оказывается, что скорости большинства молекул лежат в окрестности некоторой средней скорости. С помощью теории вероятностей (1859) Максвеллу удалось вывести формулу для относительной частоты, с которой в газе при данной температуре встречаются молекулы со скоростями в определенном интервале значений.
Если N - общее число молекул газа, dN - число молекул, скорости которых заключены в интервале от v до v+dv, то закон распределения Максвелла запишется в виде:
(1)
По
определению плотности вероятности
,
поэтому здесь
(2)
– функция распределения. Она указывает долю молекул dN/N, обладающих скоростями, лежащими в интервале dv около значения скорости v. Из этой формулы видно, что конкретный вид функции зависит от рода газа (m0) и от параметров состояния (Т).
уменьшается быстрее, чем растет множитель
v2,
то функция
,
начинаясь от нуля, достигает максимума
при vв
и затем асимптотически стремится к
нулю. Положение максимума характеризует
наиболее часто встречающуюся скорость,
которую называют наиболее
вероятной скоростью
vв.
Скорости, превышающие vв,
встречаются чаще, чем меньшие скорости.
Кривая асимметрична относительно vв.
Относительное число молекул, скорости
которых находятся в интервале от v
до v+dv,
находится как площадь заштрихованной
полоски. Площадь, ограниченная кривой
распределения и осью абсцисс, равна
единице. Это означает, что f(v)
удовлетворяет условию нормировки:
.
Значение
наиболее вероятной скорости vв
находят, исследуя f(v)
на экстремум:
.
Значения v=0 и v= соответствуют минимумам распределения (1), а значение v, при котором выражение в скобках равно нулю, и есть наиболее вероятная скорость:
vв=
.
Из полученной формулы видно, что с повышением температуры газа максимум кривой распределения смещается в сторону больших скоростей. Однако площадь, ограниченная кривой остается неизменной, поэтому при повышении температуры кривая распределения молекул по скоростям будет растягиваться и понижаться, то есть наиболее вероятная скорость возрастает, а доля молекул, обладающих этой скоростью, уменьшается.
,
где u=v/vи – относительная скорость молекул.
Средняя скорость молекулы v (средняя арифметическая скорость) определяется из условия:
.
Подставляя
сюда f(v)
и
интегрируя, получаем:
Итак, различают следующие характерные скорости молекул газа:
1)
наиболее вероятная скорость
vв
=
;
;
3)
средняя квадратичная скорость vкв=
.
Последовательность расположения указанных выше скоростей представлена на графике рис.6.3.