Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Молек_нефиз.doc
Скачиваний:
53
Добавлен:
12.11.2019
Размер:
2.02 Mб
Скачать

19. Цикл Карно.

Анализируя работу тепловых двигателей, Карно пришел к выводу, что наивыгоднейшим процессом является обратимый круговой процесс, состоящий из двух изотерм и двух адиабат, так как он характеризуется наибольшим коэффициентом полезного действия. Такой цикл получил название цикла Карно.

Цикл Карно – прямой круговой процесс, при котором выполненная системой работа максимальна. Цикл состоит из двух изотермических (12 и 34) и двух адиабатических расширений и сжатий (23 и 41) (см. рис.19.1). Машина, совершающая цикл Карно, называется идеальной тепловой машиной.

Работа, совершаемая при изотермическом расширении: ; А1=Q1. (1)

При адиабатическом расширении работа совершается за счет убыли внутренней энергии системы, т.к. Q’=0: .

Работа, совершаемая над системой при изотермическом сжатии:

; А2=Q2. (2)

Работа при адиабатическом сжатии: А’’=–DU = СV2–Т1).

Подсчитаем КПД идеальной тепловой машины.

(3)

Запишем уравнения Пуассона для двух адиабатических процессов:

Взяв их отношение, получим: .

Выразив в формуле (3) через и сократив на , получим:

.

Отсюда сформулируем первую теорему Карно: коэффициент полезного действия обратимого цикла Карно не зависит от природы рабочего тела и является функцией только абсолютных температур нагревателя и холодильника.

Вторая теорема Карно: любая тепловая машина, работающая при данных значениях температур нагревателя и холодильника, не может иметь большего КПД, чем машина, работающая по обратимому циклу Карно при тех же значениях температур нагревателя и холодильника.

.

Термический КПД произвольного обратимого цикла

где Тmax и Tmin – экстремальные значения температуры нагревателя и холодильника, участвующих в осуществлении рассматриваемого цикла.

20. Энтропия. Приведенная теплота.

Понятие энтропии впервые было введено Р.Клаузиусом в 1862 году. Для выяснения физического содержания этого понятия рассматривают отношение теплоты Q, полученной телом в изотермическом процессе , к температуре Т теплоотдающего тела, называемое приведенным количеством теплоты: Q*= . Для произвольного процесса приведенное количество теплоты равно: Q*= ,

где dQ – количество теплоты, сообщенное системе на элементарном участке процесса теплоотдающим телом, температура которого Т.

Строгий теоретический анализ показывает. что приведенное количество теплоты, сообщаемое системе в любом обратимом круговом процессе, равно нулю (равенство Клаузиуса) . (1)

Подынтегральное (1) выражение является полным дифференциалом, то есть суммарная приведенная теплота не зависит от пути перехода, а зависит лишь от состояния, следовательно, она является функцией состояния. Функция состояния S, дифференциал которой:

(2)

называется энтропией. Здесь dQ –бесконечно малое количество теплоты, сообщенное системе в элементарном обратимом процессе, Т – абсолютная температура системы. Интегрируя выражение (2), получим

,

где S1 и S2 – значения энтропии в состояниях 1 и 2, S – изменение энтропии в течение обратимого процесса. Изменение энтропии в любом обратимом процессе, переводящем систему из состояния 1 в состояние 2, равно приведенному количеству теплоты, переданному системе в этом процессе.

Каждому состоянию тела соответствует одно определенное значение энтропии. Поэтому энтропия является однозначной функцией состояния. Физический смысл имеет не сама энтропия, а лишь разность энтропий. Клаузиусом были получены следующие важные положения, которые сформулируем без доказательства:

1. Энтропия является аддитивной величиной: энтропия системы из нескольких тел является суммой энтропий всех тел.

2. Энтропия определяется только с точностью до произвольной постоянной.

3. Если в изолированной системе происходят обратимые процессы, то ее энтропия остается неизменной:

4. Энтропия изолированной системы при протекании необратимого процесса возрастает. Энтропия изолированной системы не может уменьшаться ни при каких процессах.

Математически эти положения можно записать в виде неравенства называемого неравенством Клаузиуса: (3)

5. Энтропия системы, находящейся в равновесном состоянии, максимальна.

В природе все реальные процессы являются необратимыми. Поэтому можно утверждать, что все процессы в конечной изолированной системе ведут к увеличению энтропии. Это принцип возрастания энтропии. Основываясь на вышеизложенном, можно так сформулировать второе начало термодинамики: в изолированных системах возможны лишь такие процессы, при которых энтропия не убывает. Она постоянна, если процессы обратимы, и возрастает, если процессы необратимы.

Если система не изолирована, то ее энтропия может вести себя произвольным образом. Если система отдает тепло (DQ<0), то ее энтропия убывает. Если такая система совершает замкнутый цикл, то энтропия в конце цикла буде равна исходному значению, то есть ее изменение равно нулю. Однако на разных этапах энтропия может и убывать, и возрастать, но так, что сумма всех изменений энтропии равно нулю.