- •Метрология, стандартизация и сертификация
- •Оглавление
- •Лекция 1. Характеристика дисциплины, ее роль в подготовке бакалавров по направлению «Приборостроение». Общие сведения о метрологии. Термины и определения
- •Контрольные вопросы к лекции:
- •Лекция 2. Измерение и его основные составляющие
- •Контрольные вопросы к лекции:
- •Лекция 3. Шкалы. Классификация измерений
- •Контрольные вопросы к лекции:
- •Лекция 4. Погрешность измерений. Средства измерений
- •Контрольные вопросы к лекции:
- •Лекция 5. Поверка и калибровка средств измерений
- •Контрольные вопросы к лекции:
- •Лекция 6. Функции и цели стандартизации
- •Контрольные вопросы к лекции:
- •Лекция 7. Международная стандартизация
- •Контрольные вопросы к лекции:
- •Лекция 8. Качество продукции
- •Контрольные вопросы к лекции:
- •Лекция 9. Сертификация
- •Контрольные вопросы к лекции
- •Литература
Министерство образования и науки РФ
Казанский национальный исследовательский технический университет
им. А. Н. Туполева - КАИ
БЕЛЬСКИЙ А. М.
Метрология, стандартизация и сертификация
Конспект лекций для студентов направления "Приборостроение"
Казань 2012
Оглавление
ОГЛАВЛЕНИЕ 2
Лекция 1. Характеристика дисциплины, ее роль в подготовке бакалавров по направлению «Приборостроение». Общие сведения о метрологии. Термины и определения 4
Контрольные вопросы к лекции: 10
Лекция 2. Измерение и его основные составляющие 10
Контрольные вопросы к лекции: 13
Лекция 3. Шкалы. Классификация измерений 14
Контрольные вопросы к лекции: 17
Лекция 4. Погрешность измерений. Средства измерений 18
Контрольные вопросы к лекции: 32
Лекция 5. Поверка и калибровка средств измерений 33
Контрольные вопросы к лекции: 41
Лекция 6. Функции и цели стандартизации 42
Контрольные вопросы к лекции: 50
Лекция 7. Международная стандартизация 50
Контрольные вопросы к лекции: 58
Лекция 8. Качество продукции 58
Применив формулу среднего арифметического взвешенного, получим 65
66
Контрольные вопросы к лекции: 68
Лекция 9. Сертификация 68
В Российской Федерации только в рамках регистра систем качества зарегистрировано более 170 сертифицированных систем качества предприятий, в том числе зарубежных фирм, поставляющих товары на российский рынок. 74
Что побуждает западные компании к сертификации систем качества? В первую очередь возможность повышения конкурентоспособности, удовлетворения требований заказчика, повышения цены на продукцию (услуги), льготного кредитования и страхования, получения госзаказа. Это «внешние» мотивы. Но в западной традиции немаловажны и «внутренние» причины: более полное удовлетворение требований потребителя, улучшение качества продукции и работ, сокращение издержек, сокращение аудиторских проверок потребителем, осведомленность о качестве, сокращение переделок, позитивные культурные изменения, улучшение документации, повышение ответственности за качество, корпоративная стратегия и др. 74
Контрольные вопросы к лекции 85
Литература 86
Лекция 1. Характеристика дисциплины, ее роль в подготовке бакалавров по направлению «Приборостроение». Общие сведения о метрологии. Термины и определения
План занятия:
Предмет и задачи дисциплины, связь с другими дисциплинами. Построение лекционных, лабораторных и самостоятельных занятий. Рекомендуемая литература.
Общие сведения о метрологии. Термины и определения
Разработка, производство и эксплуатация приборов и информационно-измерительных систем связаны с большим объемом измерительных процедур, получаемая при этом измерительная информация используется не только как количественное выражение некоторого свойства объекта, но и для выработки соответствующих сигналов управления. Практически нет ни одной сферы деятельности человека, где бы ни применялись результаты измерений, – для обеспечения качества и соответствующего технического уровня продукции, обеспечения безопасной работы объектов транспорта и энергетики, для диагностики в медицине, в биологии и экологии. Известно, что более 15% общественного труда затрачивается на измерения и от 3 до 6% валового национального продукта передовых, индустриально развитых стран тратится на измерительные процедуры и связанные с ними материальные ресурсы.
Постоянно увеличивающаяся номенклатура физических величин, подлежащих измерению, расширение диапазона измерений, повышение требований к точности и быстродействию средств измерений требуют выбора соответствующего метода и средства с учетом принципов единства измерений и действующих нормативных документов.
Повышение уровня качества изделий и эффективности производства неразрывно связаны с выполнением требований отечественных и международных стандартов, а для успешной конкуренции производимых товаров (услуг) на международном рынке необходима сертификация, подтверждающая, что товар (услуга) соответствует современному уровню и безопасен (безопасна) для здоровья.
Современная экономика предполагает все большую и большую взаимную кооперацию производств стран-партнеров. Осуществлять такое взаимодействие невозможно без международных соглашений в области метрологии, стандартизации и сертификации. Использование положений, правил и норм, оговоренных в принятых соглашениях, позволяют производить продукты (услуги) надлежащего качества, цены и соответствующие современному уровню науки и техники. В связи с этим очевидно, что метрология, стандартизация и сертификация, имея каждая в отдельности самостоятельное значение, только в совокупности могут обеспечить необходимый уровень подготовки современных специалистов.
Еще совсем недавно благополучие стран основывалось на сочетании природных, географических и трудовых ресурсов, однако сейчас наиболее развитые страны конкурируют в области знаний, интеллектуальной собственности и информационных технологий. При этом информационная составляющая технологий увеличивается из года в год. Например, в современном автомобиле вычислительной техники больше, чем в «Аполлоне-11», доставившем человека на Луну в июле 1969 года.
Вообще говоря, термин «информация» имеет множество значений – например, в Толковом словаре по информатике [1] дано более тридцати определений. Особое значение среди этого многообразия имеет измерительная информация, которая позволяет количественно оценивать те или иные свойства объектов, т.е. измерять.
Измерения являются важнейшей предпосылкой для познавательной и производственной деятельности человека. В начале развития цивилизации люди могли обходиться только счетом однородных объектов – голов скота, числа воинов и т.п. Такой счет не требовал введения понятия физической величины (ФВ) и установления соответствующей единицы. Не было потребности и в специальных технических средствах (средствах измерения). По мере развития общественных отношений возникла необходимость в количественной оценке различных величин – расстояний, веса, объема и т.д. Эту оценку старались свести к простому счету, для этого выбирались природные и антропологические единицы, более или менее постоянные во времени и имеющие достаточную повторяемость. Например, линейные размеры измерялись в локтях, футах, дюймах и т.п. В процессе развития производства возникла необходимость в более точном представлении единиц измерения, поэтому стали создаваться специальные устройства, хранящие эти единицы (меры). Это были первые средства измерения (СИ).
На определенном этапе общественно-производственных отношений возникла необходимость унификации и централизации единиц измерения и не только в рамках одного государства. С этой целью 26 марта 1791 года Учредительное собрание Франции утвердило положение Парижской академии наук о принятии метрологической системы мер. Эта система строилась на основе естественной единицы – метра – одной сорокамиллионной части меридиана, проходящего через Париж. За единицу массы был принят килограмм – один кубический дециметр воды при температуре +4°С. В 1832 году Гаусс разработал методику построения систем единиц ФВ. Он предложил систему, в которой за основу были приняты 3 независимые друг от друга величины – миллиметр, миллиграмм и секунда.
В 18 веке в России указом Петра I русские меры были согласованы с английскими и это, по существу, была первая ступень объединения русской метрологии с европейской.
В 1835 году в соответствии с указом «О системе Российских мер весов» утверждены эталоны длины (платиновая сажень) и массы (платиновый фунт).
В 1842 г. в Санкт-Петербурге открылось Депо образцовых мер и весов, а в 1848 г. была издана первая в России книга по метрологии – «Общая метрология» Ф.И.Петрушевского.
В 1875г. семнадцать стран, включая Россию, подписали Метрологическую конвенцию, к которой в дальнейшем примкнули еще 41 государство. В соответствии с этой конвенцией было создано Международное бюро мер и весов (МБМВ), находящееся в городе Севре (Франция). В нем хранятся международные прототипы ряда мер и эталоны единиц некоторых физических величин. В это же время был утвержден Международный комитет мер и весов (МКМВ). В настоящее время при МКМВ действует семь консультативных комитетов по:
единицам физических величин;
времени;
термометрии;
электричеству;
фотометрии;
эталонам ионизирующих излучений.
Нельзя не упомянуть о роли в отечественной метрологии Д.И.Менделеева – не зря период с 1892 г. по 1917 г. называют менделеевским этапом развития российской метрологии. В 1893 г. Менделеев назначается управляющим Главной палаты мер и весов России, которая стала одним из первых в мире научно-исследовательских учреждений в области метрологии.
Важным этапом в отечественной метрологии является подписанный Советом народных комиссаров РСФР в 1918 г. декрет «О введении метрической системы мер и весов».
В соответствии с РМГ 29-99 «ГСИ. Метрология. Термины и определения», метрология – наука об измерениях, методах, средствах обеспечения единства измерения и способах достижения требуемой точности. Предметом метрологии является извлечение информации о свойствах объектов и процессов с заданной точностью и достоверностью. Средства метрологии – это совокупность технических средств и метрологических стандартов, обеспечивающих их рациональное использование, а также принципов единства измерения.
Основополагающее понятие метрологии – измерение. По РМГ 29-99, измерение – это нахождение значения физической величины опытным путем с помощью специальных технических средств (средств измерения).
Значимость измерений выражается в трех аспектах – философском, научном и техническом [2].
Философский аспект заключается в том, что измерения являются важнейшим универсальным методом познания окружающего мира, изучения физических явлений и процессов. Возможность измерения обуславливается предварительным изучением заданного свойства объекта, построения абстрактных моделей самого свойства и его носителя – объекта. Поэтому измерение определено не среди первичных (теоретических - эмпирических) методов познания, а среди вторичных (квантитативных), обеспечивающие достоверность измерения. С помощью вторичных познавательных процедур решаются задачи формирования данных. Данные, в широком смысле, - это зафиксированные результаты познания, где фиксация осуществляется в виде некоторых символов и их комбинаций. Измерение с этой точки зрения – это метод кодирования.
Научный аспект измерений состоит в том, что с их помощью осуществляется связь теории и практики. Без них невозможна проверка научных гипотез.
Технический аспект состоит в том, что измерения обеспечивают получение количественной информации об объекте управления и контроля. Без нее невозможно точное воспроизведение технологии и обеспечение соответствующего качества продукции.
Окружающий нас мир состоит из объектов, которые определены своими свойствами.
Свойство – это философская категория, выражающая такую сторону объекта (явления, процесса), которая обуславливает его различие или общность с другими объектами и обнаруживается в его отношениях к ним. Например, свойство «твердость» объединяет в качественном отношении целый ряд объектов, но, чтобы оценить это свойство количественно, необходимо ввести понятие величины.
Величина – свойство какого-либо объекта, которое может быть выделено из ряда других свойств и оценено тем или иным способом, в том числе и количественно. Величина существует постольку, поскольку существует объект со свойствами, выраженными данной величиной. По отношению к объектам, связанным свойством «твердость», можно сказать, что алмаз более тверд, чем, скажем, гранит, то есть интенсивность проявления этого свойства у алмаза выше, чем у гранита.
Согласно РМГ 29-99 физическая величина – это одно из свойств физического объекта в качественном отношении общее для многих объектов, а в количественном – индивидуальное для каждого из них.
Целью измерения и его конечным результатом является нахождение значения физической величины.
Значение физической величины – её оценка в принятых для измерения данной величины единицах. Понятно, что числовое значение результата измерения будет зависеть от выбора единицы физической величины. Например, одна и та же масса будет иметь разное числовое значение в килограммах и фунтах.
Рассмотрим ещё ряд терминов, необходимых для понимания дальнейшего материала.
Истинное значение измеряемой физической величины является основным понятием в метрологии. РМГ 29-99 определяет его как значение физической величины, которое идеальным образом отражало бы в качественном и количественном отношениях соответствующее свойство объекта. Одним из постулатов метрологии является положение о том, что истинное значение физической величины существует, однако определить его путем измерения невозможно. В обычном представлении под истинным понимают некоторое детерминированное значение физической величины, отражающее свойство объекта абсолютно адекватно.
Действительное значение – значение физической величины, найденное экспериментальным путем и настолько приближающееся к истинному, что для некоторых применений может быть использовано вместо него.
Измеренное значение – значение величины, отсчитанное по отсчетному устройству (шкала – указатель или цифровое средство отображения информации) средства измерения.