
- •Карагандинская государственная медицинская академия
- •Кафедра общей и биологической химии
- •Энергетический обмен. Синтез атф
- •Учебное пособие
- •Караганда 2003
- •Основные процессы, для которых используется энергия атф:
- •Пируватдегидрогеназный комплекс
- •Итоговое уравнение
- •Биологическое значение цтк
- •Сопряжение общих путей катаболизма с дыхательной цепью
- •Биологическое окисление
- •Хемиосмотическое сопряжение.
- •Общая характеристика этапов хемиосмотического процесса
- •Цепь транспорта электронов - цтэ
- •Комплекс I
- •Комплекс II
- •Цитохром с
- •Окислительное фосфорилирование
- •Разобщение дыхания и фосфорилирования
- •Дыхательный контроль
- •Регуляция энергетического обмена
- •Гипоэнергетические состояния
Разобщение дыхания и фосфорилирования
Убедительные экспериментальные доказательства в пользу описанного механизма сопряжения дыхания и фосфорилирования были получены с помощью ионофоров. Молекулы этих веществ, как правило, липофильны и способны переносить ионы через мембрану. Например, 2,4-динитрофенол (протонофор) легко диффундирует через мембрану, в ионизированной и неионизированной форме, перенося протоны в сторону их меньшей концентрации в обход протонных каналов. Таким образом, 2,4-динитрофенол уничтожает электрохимический потенциал, и синтез АТР становится невозможным, хотя окисление субстратов при этом происходит. Энергия дыхательной цепи в этом случае полностью рассеивается в виде теплоты. Этим объясняется пирогенное действие разобщителей. Разобщающим действием обладают гормон щитовидной железы - тироксин, а также некоторые антибиотики, такие как валиномицин и грамицидин.
Дыхательный контроль
Скорость дыхания митохондрий может контролироваться концентрацией ADP. Это объясняется тем, что окисление и фосфорилирование жестко сопряжены. Энергия, необходимая клетке для совершения работы, поставляется за счет гидролиза АТР. Концентрация ADP при этом увеличивается; в результате создаются условия для ускорения дыхания, что и ведет к восполнению запасов АТР.
Ингибиторы цепи транспорта электронов и окислительного фосфорилирования Ингибиторы, блокирующие дыхательную цепь, действуют в определенных местах, препятствуя работе дыхательных ферментов. Ротенон блокируют перенос электронов на участке до цитохрома b, действуя предположительно на НАД(Ф)-H2-дегидрогеназу. Антимицин А (антибиотик, продуцируемый Streptomyces) подавляет перенос электронов от цитохрома b к цитохрому c1. Цианид, окись углерода и азид блокируют конечный этап переноса электронов от цитохромов a + a3 на молекулярный кислород, ингибируя цитохромоксидазу. Если блокировать перенос электронов в электронтранспортной цепи определенными ингибиторами, то переносчики, находящиеся на участке от субстрата до места действия ингибитора, будут в восстановленной, а переносчики за местом действия ингибитора - в окисленной форме.
Энергетика цитратного цикла и общих путей катаболизма
За один оборот цитратного цикла синтезируется 12 молекул АТР. Девять из них образуются за счет энергии транспорта в дыхательной цепи трех пар водорода от трех молекул NADH + H+. Две молекулы АТР синтезируются при окислении 1 молекулы FADH2, так как в дыхательной цепи в данном случае действуют только два пункта сопряжения с окислительным фосфорилированием ADP. Кроме того, в цитратном цикле образуется 1 моль GTP (АТР).
Синтез ГТФ происходит в реакции, катализируемой сукцинатдегидрогеназой. В этой реакции донором энергии для синтеза макроэрга является молекула субстрата. Такой способ синтеза называется субстратным фосфорилированием.
Субстратное фосфорилирование в отличие от окислительного происходит без участия ЦПЭ и кислорода. Такой способ синтеза АТФ происходит и в некоторых других метаболических путях.
Затем ГТФ может трансформироваться в АТФ при действии нуклеозиддифосфаткиназы: ГТФ+АДФ АТФ+ГДФ.
В общих путях катаболизма синтезируется 15 молекул АТР. Три из них при окислительном декарбоксилировании пирувата и 12 - в цитратном цикле.