
- •4 Классификация химических реакций по фазовому составу, по механизму, по молекулярности, по порядку реакции
- •5. Стехиометрия химических реакция
- •6.Технологические критерии эффективности химико-технологического процесса.
- •7.Степень превращения(конверсия реагента)
- •8.Выход продукта
- •9.Селективность
- •10.Производительность
- •11Интенсивность
- •12. Технико – экономические показатели технологических процессов
- •13. Способы увеличения скорости гомогенной химической реакции
- •14. Законы скорости реакции первого и второго порядка(зависимость скорости от концентрации и конверсии)
- •17.Энергия активации химической реакции
- •18. Уравнение Аррениуса(скорость химической реакции)
- •19. Влияние концентрации реагентов и температуры на скорость хим.Реакции
- •20.Селективность
- •21.Влияние температуры на селективность химического прогресса
- •22.Способы увеличения скорости гомогенной химической реакции
- •23.Скорость гетерогенного хим.Процесса
- •24,25. Основные стадии и кинетические особенности гетерогенных процессов
- •26. Диффузионная и кинетические области протекания гетерогенного химического процесса.
- •27. Экспериментальное определение области протекания гетерогенного химического процесса.
- •29.Способы интенсификации гетерогенных химических процессов в системе газ-твердое в-во.
- •30. Катализ и катализаторы.
- •31.Технологические характеристики твердых катализаторов.
- •32. Основные стадии гетерогенно-каталитического процесса в системе твердый катализатор –газообразные реагенты
- •33. Способы интенсификации гетерогенно-каталитического процесса в системе твердый катализатор – газообразные реагенты.
- •34. Скорости прямой и обратной химической реакции
- •35.Равновесие в случае обратимой хим.Реакции
- •36.Константа равновесия обрат.Хим.Реакции
- •37. Смещения равновесия
- •39.Влияние температуры и давления на положение равновесия обратимой химической реакции.
- •40. Химический реактор как основной аппарат химического производства
- •41.Основные показатели работы хим.Реактора
- •42. Классификация химических реакторов и режимов их работы
- •44.Адиабатический, изотермический и автотермический режимы работы хим.Реактора.
- •45.Периодический реактор идеального смешения (рис-п)
- •46.Непрерывный (проточный) реактор идеального смешения (рис-н).
- •47.Реактор идеального вытеснения
- •48.Уравнение материального баланса химического реактора в общем виде.
- •49.Конвекционный и диффузионный перенос массы в химическом реакторе.
- •50.Мат.Баланс рис-п, рис-н, рив в стационарном режиме
- •53. Уравнение теплового баланса хим.Реактора в общем виде.
- •54. Уравнение теплового баланса реакторов рис-п, рис-н, рив.
- •55.Тепловая устойчивость хим. Реакторов в случае экзо- и эндо-термических реакций.
- •56.Оптимальный тепловой режим хим. Реактора.
- •57.Способы осуществления оптимального теплового режима хим. Реактора.
- •58.Вода в в химической промышленности
- •59.Водоподготовка
- •60.Жесткость и умягчение воды
- •62.Нефть и природный газ как сырье хим.Промышленности
- •63.Обогащение твердого, жидкого и газообразного сырья химической промышленности.
- •64.Пути развития сырьевой базы химической промышленности
- •65.Энергетическая база химической промышленности
- •66.Вторичные энергетические ресурсы-м и (вэр)
- •67.Утилизационные установки
33. Способы интенсификации гетерогенно-каталитического процесса в системе твердый катализатор – газообразные реагенты.
Температура оказывает существенное влияние на каталитические процессы, т.к. при повышении температуры увеличивается const скорости реакции и одновременно изменяется const равновесия. Для процессов, проходящих в кинетической области, повышение температуры всегда способствует приближению процесса к состоянию равновесия. Время контакта или сопротивления реагирующих веществ с катализатором также является важной технологической характеристикой каталитического процесса, т.к. оно определяет его интенсивность. Интенсивность катализатора выражают в виде: G=pzs
G – производительность катализатора кг*ч-1 *м-3
P – плотность реагента при нормальных условиях кг*м-3
Z – мольная доля целевого продукта в газовой смеси
S – объёмная скорость, ч-1
34. Скорости прямой и обратной химической реакции
Химические реакции по признаку обратимости делятся на необратимые и обратимые. К необратимым реакциям относятся такие реакции, которые протекают до тех пор, пока один из реагентов полностью не израсходуются. Признаками необратимых реакций, протекающих в растворах, являются: а) выпадение осадка, б) образование газа, в) образование слабого электролита.
Обратимыми реакциями называются такие реакции, которые протекают одновременно в двух взаимно противоположных направлениях. Для подобных реакций вместо знака равенства пользуются противоположно направленными стрелками (↔).
С течением времени скорость любой реакции, измеряется по убывающим концентрациям исходных веществ, будет уменьшаться, так как по мере взаимодействия веществ их концентрации уменьшаются (скорость прямой реакции). Если реакция является обратимой, то по мере увеличения концентрации продуктов ее скорость будет возрастать (скорость обратной реакции). Как только скорости прямой и обратной реакций становятся одинаковыми, в системе устанавливается химическое равновесие и дальнейшее изменение концентраций всех веществ, находящихся в системе, прекращается.
Количественной характеристикой состояния равновесия является константа химического равновесия К, которая определяется отношением констант скоростей прямой и обратной реакцией.
В подавляющем большинстве случаев константы скоростей прямой и обратной реакций не равны. Константа равновесия – постоянная при данной температуре величина и определяет соотношение между равновесными концентрациями продуктов реакции и исходных веществ, возведенных в степени их стехиометрических коэффициентов.
В состоянии равновесия система может находиться до тех пор, пока не изменится хотя бы одно из внешних воздействий: температура, концентрация одного из реагентов, давление (для газов). Изменения, происходящие в равновесной системе в результате внешних воздействий, определяются принципом подвижного равновесия (принцип Ле-Шателье): внешнее воздействие на систему, находящуюся в состоянии равновесия, приводит к смещению этого равновесия в направлении, при котором эффект произведенного воздействия ослабляется.
На смещение равновесия оказывает влияние:
1) изменение температуры: эндотермический процесс ускоряется в большей степени при повышении температуры и, наоборот, при понижении температуры ускоряется экзотермический процесс;
2) изменение давления (для реакций, протекающих в газовой фазе): при повышении давления равновесие реакции смещается в направлении образования веществ, занимающих меньший объем, и, наоборот, понижение давления способствует процессу, сопровождающемуся увеличением объема. Если реакция протекает без изменения объема, то изменение давления в системе не оказывает влияние на химическое равновесие.
3) изменение концентрации: увеличение концентрации исходных веществ приводит к увеличению скорости прямой реакции, при этом протекающий в системе процесс завершится, когда скорости прямой и обратной реакций станут равны и установится новое равновесие. Уменьшение концентрации одного из продуктов реакции (вывод из системы) приводит к смещению равновесия в сторону его образования.